Multivariate Trace Inequalities

Mario Berta

arXiv:1604.03023 with Sutter and Tomamichel (to appear in CMP) arXiv:1512.02615 with Fawzi and Tomamichel

QMath13 - October 8, 2016

Motivation: Quantum Entropy

■ Entropy of quantum states ρ_A on Hilbert spaces \mathcal{H}_A [von Neumann 1927]:

$$H(A)_{\rho} := -\operatorname{tr}\left[\rho_A \log \rho_A\right] . \tag{1}$$

Strong subadditivity (SSA) of tripartite quantum states on $\mathcal{H}_A \otimes \mathcal{H}_B \otimes \mathcal{H}_C$ from matrix trace inequalities [Lieb & Ruskai 1973]:

$$H(AB)_{\rho} + H(BC)_{\rho} \ge H(ABC)_{\rho} + H(B)_{\rho}. \tag{2}$$

- Generates all known mathematical properties of quantum entropy, manifold applications in quantum physics, quantum information theory, theoretical computer science etc.
- <u>This talk</u>: entropy for quantum systems, strengthening of SSA from <u>multivariate</u> trace inequalities.

Motivation: Quantum Entropy

■ Entropy of quantum states ρ_A on Hilbert spaces \mathcal{H}_A [von Neumann 1927]:

$$H(A)_{\rho} := -\operatorname{tr}\left[\rho_A \log \rho_A\right] . \tag{1}$$

Strong subadditivity (SSA) of tripartite quantum states on $\mathcal{H}_A \otimes \mathcal{H}_B \otimes \mathcal{H}_C$ from matrix trace inequalities [Lieb & Ruskai 1973]:

$$H(AB)_{\rho} + H(BC)_{\rho} \ge H(ABC)_{\rho} + H(B)_{\rho}. \tag{2}$$

- Generates all known mathematical properties of quantum entropy, manifold applications in quantum physics, quantum information theory, theoretical computer science etc.
- <u>This talk</u>: entropy for quantum systems, strengthening of SSA from <u>multivariate</u> trace inequalities.
- Mark Wilde at 4pm: Universal Recoverability in Quantum Information.

Overview

- Entropy for quantum systems
- Multivariate trace inequalities
- Proof of entropy inequalities
- 4 Conclusion

■ Entropy of probability distribution *P* of random variable *X* over finite alphabet [Shannon 1948, Rényi 1961]:

$$H(X)_P := -\sum_x P(x) \log P(x), \quad \text{with } P(x) \log P(x) = 0 \text{ for } P(x) = 0.$$
 (3)

Entropy of probability distribution P of random variable X over finite alphabet [Shannon 1948, Rényi 1961]:

$$H(X)_P := -\sum_x P(x) \log P(x), \quad \text{with } P(x) \log P(x) = 0 \text{ for } P(x) = 0.$$
 (3)

Extension to relative entropy of P with respect to distribution Q over finite alphabet,

$$D(P\|Q) := \sum_{x} P(x) \log \frac{P(x)}{Q(x)} \quad \text{[Kullback \& Leibler 1951]}\,, \tag{4} \label{eq:definition}$$

where $P(x) \log \frac{P(x)}{Q(x)} = 0$ for P(x) = 0 and by continuity $+\infty$ if $P \not\ll Q$.

Entropy of probability distribution P of random variable X over finite alphabet [Shannon 1948, Rényi 1961]:

$$H(X)_P := -\sum_x P(x) \log P(x), \quad \text{with } P(x) \log P(x) = 0 \text{ for } P(x) = 0.$$
 (3)

Extension to relative entropy of P with respect to distribution Q over finite alphabet,

$$D(P\|Q) := \sum_{x} P(x) \log \frac{P(x)}{Q(x)} \quad \text{[Kullback & Leibler 1951]}, \tag{4}$$

where $P(x) \log \frac{P(x)}{Q(x)} = 0$ for P(x) = 0 and by continuity $+\infty$ if $P \not\ll Q$.

Multipartite entropy measures are generated through relative entropy, e.g., SSA:

$$H(XY)_P + H(YZ)_P \ge H(XYZ)_P + H(Y)_P$$
 equivalent to (5)

$$D(P_{XYZ}||U_X \times P_{YZ}) \ge D(P_{XY}||U_X \times P_Y)$$
 with U_X uniform distribution. (6)

Entropy of probability distribution P of random variable X over finite alphabet [Shannon 1948, Rényi 1961]:

$$H(X)_P := -\sum_x P(x) \log P(x), \quad \text{with } P(x) \log P(x) = 0 \text{ for } P(x) = 0.$$
 (3)

Extension to relative entropy of P with respect to distribution Q over finite alphabet,

$$D(P\|Q) := \sum_{x} P(x) \log \frac{P(x)}{Q(x)} \quad \text{[Kullback & Leibler 1951]}\,, \tag{4}$$

where $P(x)\log\frac{P(x)}{Q(x)}=0$ for P(x)=0 and by continuity $+\infty$ if $P\not\ll Q$.

Multipartite entropy measures are generated through relative entropy, e.g., SSA:

$$H(XY)_P + H(YZ)_P \ge H(XYZ)_P + H(Y)_P$$
 equivalent to (5)

$$D(P_{XYZ}||U_X \times P_{YZ}) \ge D(P_{XY}||U_X \times P_Y)$$
 with U_X uniform distribution. (6)

Monotonicity of relative entropy (MONO) under stochastic matrices N:

$$D(P||Q) \ge D(N(P)||N(Q))$$
. (7)

Entropy for quantum systems

■ The entropy of $\rho_A \in \mathcal{S}(\mathcal{H}_A)$ is defined as:

$$H(A)_{\rho} := -\mathrm{tr}\left[\rho_A \log \rho_A\right] = -\sum_x \lambda_x \log \lambda_x \quad \text{[von Neumann 1927]}.$$
 (8)

Question: what is the extension of the relative entropy for quantum states $[\rho, \sigma] \neq 0$?

Entropy for quantum systems

■ The entropy of $\rho_A \in \mathcal{S}(\mathcal{H}_A)$ is defined as:

$$H(A)_{\rho} := -\text{tr}\left[\rho_A \log \rho_A\right] = -\sum_x \lambda_x \log \lambda_x \quad \text{[von Neumann 1927]}. \tag{8}$$

- Question: what is the extension of the relative entropy for quantum states $[\rho, \sigma] \neq 0$?
- Commutative relative entropy for $\rho, \sigma \in \mathcal{S}(\mathcal{H})$ defined as

$$D_K(\rho\|\sigma) := \sup_{\mathcal{M}} D(\mathcal{M}(\rho)\|\mathcal{M}(\sigma)) \quad \text{[Donald 1986, Petz \& Hiai 1991]}, \qquad \text{(9)}$$

where $\mathcal{M} \in \mathrm{CPTP}(\mathcal{H} \to \mathcal{H}')$ und $\mathrm{Bild}(\mathcal{M}) \subseteq M \subseteq \mathrm{Lin}(\mathcal{H}')$, M commutative subalgebra.

Entropy for quantum systems

■ The entropy of $\rho_A \in \mathcal{S}(\mathcal{H}_A)$ is defined as:

$$H(A)_{\rho} := -\text{tr}\left[\rho_A \log \rho_A\right] = -\sum_x \lambda_x \log \lambda_x \quad \text{[von Neumann 1927]}. \tag{8}$$

- Question: what is the extension of the relative entropy for quantum states $[\rho, \sigma] \neq 0$?
- Commutative relative entropy for $\rho, \sigma \in \mathcal{S}(\mathcal{H})$ defined as

$$D_K(\rho\|\sigma) := \sup_{\mathcal{M}} D(\mathcal{M}(\rho)\|\mathcal{M}(\sigma)) \quad \text{[Donald 1986, Petz \& Hiai 1991]}, \qquad \text{(9)}$$

where $\mathcal{M} \in \mathrm{CPTP}(\mathcal{H} \to \mathcal{H}')$ und $\mathrm{Bild}(\mathcal{M}) \subseteq M \subseteq \mathrm{Lin}(\mathcal{H}')$, M commutative subalgebra.

The quantum relative entropy is defined as

$$D(\rho\|\sigma) := \operatorname{tr}\left[\rho\left(\log\rho - \log\sigma\right)\right] \quad \text{[Umegaki 1962]}. \tag{10}$$

■ Monotonicity (MONO) for $\rho, \sigma \in \mathcal{S}(\mathcal{H})$ and $\mathcal{N} \in \mathrm{CPTP}(\mathcal{H} \to \mathcal{H}')$:

$$D(\rho \| \sigma) \ge D(\mathcal{N}(\rho) \| \mathcal{N}(\sigma))$$
 [Lindblad 1975]. (11)

Entropy for quantum systems II

Theorem (Achievability of relative entropy, B. et al. 2015)

For $\rho, \sigma \in \mathcal{S}(\mathcal{H})$ with $\rho, \sigma > 0$ we have

$$D_K(\rho\|\sigma) \le D(\rho\|\sigma)$$
 with equality if and only if $[\rho, \sigma] \ne 0$. (12)

Entropy for quantum systems II

Theorem (Achievability of relative entropy, B. et al. 2015)

For $\rho, \sigma \in \mathcal{S}(\mathcal{H})$ with $\rho, \sigma > 0$ we have

$$D_K(\rho\|\sigma) \leq D(\rho\|\sigma) \quad \text{with equality if and only if } [\rho,\sigma] \neq 0. \tag{12}$$

Lemma (Variational formulas for entropy, B. et al. 2015)

For $\rho, \sigma \in \mathcal{S}(\mathcal{H})$ we have

$$D_K(\rho||\sigma) = \sup_{\omega > 0} \operatorname{tr}\left[\rho \log \omega\right] - \log \operatorname{tr}\left[\sigma \omega\right] \tag{13}$$

$$D(\rho\|\sigma) = \sup_{\omega>0} \operatorname{tr}\left[\rho\log\omega\right] - \log\operatorname{tr}\left[\exp\left(\log\sigma + \log\omega\right)\right] \quad \textit{[Araki ?, Petz 1988]}. \tag{14}$$

Golden-Thompson inequality:

$$\operatorname{tr}\left[\exp(\log M_1 + \log M_2)\right] \le \operatorname{tr}[M_1 M_2].$$
 (15)

Entropy for quantum systems II

Theorem (Achievability of relative entropy, B. et al. 2015)

For $\rho, \sigma \in \mathcal{S}(\mathcal{H})$ with $\rho, \sigma > 0$ we have

$$D_K(\rho\|\sigma) \leq D(\rho\|\sigma) \quad \text{with equality if and only if } [\rho,\sigma] \neq 0. \tag{12}$$

Lemma (Variational formulas for entropy, B. et al. 2015)

For $\rho, \sigma \in \mathcal{S}(\mathcal{H})$ we have

$$D_K(\rho||\sigma) = \sup_{\omega > 0} \operatorname{tr}\left[\rho \log \omega\right] - \log \operatorname{tr}\left[\sigma \omega\right] \tag{13}$$

$$D(\rho\|\sigma) = \sup_{\omega > 0} \operatorname{tr}\left[\rho \log \omega\right] - \log \operatorname{tr}\left[\exp\left(\log \sigma + \log \omega\right)\right] \quad \textit{[Araki ?, Petz 1988]}. \tag{14}$$

Golden-Thompson inequality:

$$\operatorname{tr}\left[\exp(\log M_1 + \log M_2)\right] \le \operatorname{tr}[M_1 M_2]. \tag{15}$$

Proof: new matrix analysis technique asymptotic spectral pinching (see also [Hiai & Petz 1993, Mosonyi & Ogawa 2015]).

Asymptotic spectral pinching [B. et al. 2016]

■ $A \geq 0$ with spectral decomposition $A = \sum_{\lambda} \lambda P_{\lambda}$, where $\lambda \in \operatorname{spec}(A) \subseteq \mathbb{R}$ eigenvalues and P_{λ} orthogonal projections. Spectral pinching with respect to A defined as

$$\mathcal{P}_A: X \ge 0 \mapsto \sum_{\lambda \in \operatorname{spec}(A)} P_{\lambda} X P_{\lambda} \,. \tag{16}$$

Asymptotic spectral pinching [B. et al. 2016]

■ $A \geq 0$ with spectral decomposition $A = \sum_{\lambda} \lambda P_{\lambda}$, where $\lambda \in \operatorname{spec}(A) \subseteq \mathbb{R}$ eigenvalues and P_{λ} orthogonal projections. Spectral pinching with respect to A defined as

$$\mathcal{P}_A: X \ge 0 \mapsto \sum_{\lambda \in \operatorname{spec}(A)} P_{\lambda} X P_{\lambda} \,.$$
 (16)

(i)
$$[\mathcal{P}_A(X), A] = 0$$
 (ii) $\operatorname{tr}[\mathcal{P}_A(X)A] = \operatorname{tr}[XA]$ (iii) $\mathcal{P}_A(X) \ge |\operatorname{spec}(A)|^{-1} \cdot X$ (iv) $|\operatorname{spec}(A \otimes \cdots \otimes A)| = |\operatorname{spec}(A^{\otimes m})| \le \mathcal{O}(\operatorname{poly}(m))$. (17)

Asymptotic spectral pinching [B. et al. 2016]

■ $A \geq 0$ with spectral decomposition $A = \sum_{\lambda} \lambda P_{\lambda}$, where $\lambda \in \operatorname{spec}(A) \subseteq \mathbb{R}$ eigenvalues and P_{λ} orthogonal projections. Spectral pinching with respect to A defined as

$$\mathcal{P}_A: X \ge 0 \mapsto \sum_{\lambda \in \operatorname{spec}(A)} P_\lambda X P_\lambda \,. \tag{16}$$

(i)
$$[\mathcal{P}_A(X), A] = 0$$
 (ii) $\operatorname{tr}[\mathcal{P}_A(X)A] = \operatorname{tr}[XA]$ (iii) $\mathcal{P}_A(X) \ge |\operatorname{spec}(A)|^{-1} \cdot X$ (iv) $|\operatorname{spec}(A \otimes \cdots \otimes A)| = |\operatorname{spec}(A^{\otimes m})| \le \mathcal{O}(\operatorname{poly}(m))$. (17)

Golden-Thompson inequality:

$$\log \operatorname{tr} \left[\exp(\log A + \log B) \right] = \frac{1}{m} \log \operatorname{tr} \left[\exp \left(\log A^{\otimes m} + \log B^{\otimes m} \right) \right]$$

$$\leq \frac{1}{m} \log \operatorname{tr} \left[\exp \left(\log A^{\otimes m} + \log \mathcal{P}_{A^{\otimes m}} \left(B^{\otimes m} \right) \right) \right] + \frac{\log \operatorname{poly}(m)}{m}$$
(19)

$$= \frac{1}{m} \log \operatorname{tr} \left[A^{\otimes n} \mathcal{P}_{A \otimes m} \left(B^{\otimes m} \right) \right] + \frac{\log \operatorname{poly}(m)}{m}$$
 (20)

$$= \log \operatorname{tr}[AB] + \frac{\log \operatorname{poly}(m)}{m} \quad \Box \tag{21}$$

Entropy for quantum systems III

The right extension for applications is Umegaki's $D(\rho \| \sigma) = \operatorname{tr} \left[\rho \left(\log \rho - \log \sigma \right) \right]$. Intuition chain rule [Petz 1992] with SSA:

$$H(AB)_{\rho} + H(BC)_{\rho} \ge H(ABC)_{\rho} + H(B)_{\rho}$$
 equivalent to (22)

$$D(\rho_{ABC} \| \tau_A \otimes \rho_{BC}) \ge D(\rho_{AB} \| \tau_A \otimes \rho_B) \quad \text{with } \tau_A = \frac{1_A}{\dim(\mathcal{H}_A)}. \tag{23}$$

Entropy for quantum systems III

The right extension for applications is Umegaki's $D(\rho \| \sigma) = \operatorname{tr} \left[\rho \left(\log \rho - \log \sigma \right) \right]$. Intuition chain rule [Petz 1992] with SSA:

$$H(AB)_{\rho} + H(BC)_{\rho} \ge H(ABC)_{\rho} + H(B)_{\rho}$$
 equivalent to (22)

$$D(\rho_{ABC} \| \tau_A \otimes \rho_{BC}) \ge D(\rho_{AB} \| \tau_A \otimes \rho_B) \quad \text{with } \tau_A = \frac{1_A}{\dim(\mathcal{H}_A)}. \tag{23}$$

All known mathematical properties from MONO:

$$D(\rho \| \sigma) \ge D(\mathcal{N}(\rho) \| \mathcal{N}(\sigma)) \implies \text{strengthening of MONO/SSA?}$$
 (24)

Entropy for quantum systems III

The right extension for applications is Umegaki's $D(\rho \| \sigma) = \operatorname{tr} \left[\rho \left(\log \rho - \log \sigma \right) \right]$. Intuition chain rule [Petz 1992] with SSA:

$$H(AB)_{\rho} + H(BC)_{\rho} \ge H(ABC)_{\rho} + H(B)_{\rho}$$
 equivalent to (22)

$$D(\rho_{ABC} \| \tau_A \otimes \rho_{BC}) \ge D(\rho_{AB} \| \tau_A \otimes \rho_B) \quad \text{with } \tau_A = \frac{1_A}{\dim(\mathcal{H}_A)}. \tag{23}$$

All known mathematical properties from MONO:

$$D(\rho \| \sigma) \ge D(\mathcal{N}(\rho) \| \mathcal{N}(\sigma)) \quad \Rightarrow \text{ strengthening of MONO/SSA?}$$
 (24)

Equality conditions MONO [Petz 1986]:

Let
$$\rho, \sigma \in \mathcal{S}(\mathcal{H})$$
 with $\rho \ll \sigma$ and $\mathcal{N} \in \mathrm{CPTP}(\mathcal{H} \to \mathcal{H}')$. Then, we have

$$D(\rho \| \sigma) - D(\mathcal{N}(\rho) \| \mathcal{N}(\sigma)) = 0$$
(25)

if and only if there exists $\mathcal{R}_{\sigma,\mathcal{N}} \in \mathrm{CPTP}(\mathcal{H}' \to \mathcal{H})$ such that

$$\mathcal{R}_{\sigma,\mathcal{N}} \circ \mathcal{N}(\rho) = \rho \quad \text{und} \quad \mathcal{R}_{\sigma,\mathcal{N}} \circ \mathcal{N}(\sigma) = \sigma.$$
 (26)

The quantum operation $\mathcal{R}_{\sigma,\mathcal{N}}$ is not unique, but can be chosen independent of ρ .

Strong monotonicity (sMONO)

Theorem (Strong monotonicity (sMONO), B. et al. 2016)

For the same premises as before, we have

$$D(\rho \| \sigma) - D(\mathcal{N}(\rho) \| \mathcal{N}(\sigma)) \ge D_K(\rho \| \mathcal{R}_{\sigma, \mathcal{N}} \circ \mathcal{N}(\rho)), \qquad (27)$$

with

$$\begin{array}{l} \mathcal{R}_{\sigma,\mathcal{N}}(\,\cdot\,) := \int_{-\infty}^{\infty} \mathrm{d}t \; \beta_0(t) \sigma^{\frac{1+it}{2}} \mathcal{N}^\dagger \left(\mathcal{N}(\sigma)^{-\frac{1+it}{2}}(\,\cdot\,) \mathcal{N}(\sigma)^{-\frac{1-it}{2}} \right) \sigma^{\frac{1-it}{2}} \in \mathrm{CPTP}(\mathcal{H}' \to \mathcal{H}) \\ \text{and } \beta_0(t) := \frac{\pi}{2} \left(\cosh(\pi t) + 1 \right)^{-1}. \end{array}$$

Previous work: [Winter & Li 2012, Kim 2013, B. et al. 2015, Fawzi & Renner 2015, Wilde 2015, Junge et al. 2015, Sutter et al. 2016].

Strong monotonicity (sMONO)

Theorem (Strong monotonicity (sMONO), B. et al. 2016)

For the same premises as before, we have

$$D(\rho \| \sigma) - D(\mathcal{N}(\rho) \| \mathcal{N}(\sigma)) \ge D_K(\rho \| \mathcal{R}_{\sigma, \mathcal{N}} \circ \mathcal{N}(\rho)), \qquad (27)$$

with

$$\mathcal{R}_{\sigma,\mathcal{N}}(\,\cdot\,) := \int_{-\infty}^{\infty} \mathrm{d}t \; \beta_0(t) \sigma^{\frac{1+it}{2}} \mathcal{N}^{\dagger} \left(\mathcal{N}(\sigma)^{-\frac{1+it}{2}}(\,\cdot\,) \mathcal{N}(\sigma)^{-\frac{1-it}{2}} \right) \sigma^{\frac{1-it}{2}} \in \mathrm{CPTP}(\mathcal{H}' \to \mathcal{H})$$
 and $\beta_0(t) := \frac{\pi}{2} \left(\cosh(\pi t) + 1 \right)^{-1}$.

- Previous work: [Winter & Li 2012, Kim 2013, B. et al. 2015, Fawzi & Renner 2015, Wilde 2015, Junge et al. 2015, Sutter et al. 2016].
- Special case SSA (sSSA), becomes an equality in the commutative case:

$$D(\rho_{ABC} \| \tau_A \otimes \rho_{BC}) - D(\rho_{AB} \| \tau_A \otimes \rho_B) \ge D_K \left(\rho_{ABC} \| \left(\mathcal{I}_A \otimes \mathcal{R}_{B \to BC} \right) \left(\rho_{AB} \right) \right), \tag{28}$$

with
$$\mathcal{R}_{B\to BC}(\,\cdot\,) := \int_{-\infty}^{\infty} \mathrm{d}t \, \beta_0(t) \rho_{BC}^{\frac{1+it}{2}} \left(\left(\rho_B^{-\frac{1+it}{2}}(\,\cdot\,) \rho_B^{-\frac{1-it}{2}} \right) \otimes 1_C \right) \rho_{BC}^{\frac{1-it}{2}}$$
, where $\mathcal{R}_{B\to BC} \in \mathrm{CPTP}(\mathcal{H}_B \to \mathcal{H}_B \otimes \mathcal{H}_C)$.

Following [Lieb & Ruskai 1973] we have with Klein's inequality

$$D(\rho_{ABC} \| \tau_A \otimes \rho_{BC}) - D(\rho_{AB} \| \tau_A \otimes \rho_B) = D\left(\rho_{ABC} \| \exp\left(\log \rho_{AB} - \log \rho_B + \log \rho_{BC}\right)\right)$$

$$(29)$$

$$\geq \operatorname{tr}\left[\rho_{ABC} - \exp\left(\log \rho_{AB} - \log \rho_B + \log \rho_{BC}\right)\right]$$

$$(30)$$

We could conclude SSA if $\operatorname{tr}[\exp(\log \rho_{AB} - \log \rho_B + \log \rho_{BC})] \leq 1$.

Following [Lieb & Ruskai 1973] we have with Klein's inequality

$$D(\rho_{ABC} \| \tau_A \otimes \rho_{BC}) - D(\rho_{AB} \| \tau_A \otimes \rho_B) = D\left(\rho_{ABC} \| \exp\left(\log \rho_{AB} - \log \rho_B + \log \rho_{BC}\right)\right)$$

$$\geq \operatorname{tr}\left[\rho_{ABC} - \exp\left(\log \rho_{AB} - \log \rho_B + \log \rho_{BC}\right)\right]$$
(30)

We could conclude SSA if $\operatorname{tr}[\exp(\log \rho_{AB} - \log \rho_B + \log \rho_{BC})] \leq 1$.

Golden-Thompson $\operatorname{tr}\left[\exp(\log M_1 + \log M_2)\right] \le \operatorname{tr}[M_1 M_2]$ to Lieb's triple matrix inequality:

$$\operatorname{tr}\left[\exp(\log M_{1} - \log M_{2} + \log M_{3})\right] \leq \int_{0}^{\infty} d\lambda \operatorname{tr}\left[M_{1} \left(M_{2} + \lambda\right)^{-1} M_{3} \left(M_{2} + \lambda\right)^{-1}\right]$$
[Lieb 1973]. (31)

Following [Lieb & Ruskai 1973] we have with Klein's inequality

$$D(\rho_{ABC} \| \tau_A \otimes \rho_{BC}) - D(\rho_{AB} \| \tau_A \otimes \rho_B) = D\left(\rho_{ABC} \| \exp\left(\log \rho_{AB} - \log \rho_B + \log \rho_{BC}\right)\right)$$

$$(29)$$

$$\geq \operatorname{tr}\left[\rho_{ABC} - \exp\left(\log \rho_{AB} - \log \rho_B + \log \rho_{BC}\right)\right]$$

$$(30)$$

We could conclude SSA if $\operatorname{tr}[\exp(\log \rho_{AB} - \log \rho_B + \log \rho_{BC})] \leq 1$.

Golden-Thompson $\operatorname{tr}\left[\exp(\log M_1 + \log M_2)\right] \leq \operatorname{tr}[M_1 M_2]$ to Lieb's triple matrix inequality:

$$\operatorname{tr}\left[\exp(\log M_{1} - \log M_{2} + \log M_{3})\right] \leq \int_{0}^{\infty} \mathrm{d}\lambda \operatorname{tr}\left[M_{1} \left(M_{2} + \lambda\right)^{-1} M_{3} \left(M_{2} + \lambda\right)^{-1}\right]$$
[Lieb 1973]. (31)

■ Proof SSA with $M_1 := \rho_{AB}, M_2 := \rho_B, M_3 := \rho_{BC}$ and $\int_0^\infty d\lambda \ x(x+\lambda)^{-2} = 1$.

Following [Lieb & Ruskai 1973] we have with Klein's inequality

$$D(\rho_{ABC} \| \tau_A \otimes \rho_{BC}) - D(\rho_{AB} \| \tau_A \otimes \rho_B) = D\left(\rho_{ABC} \| \exp\left(\log \rho_{AB} - \log \rho_B + \log \rho_{BC}\right)\right)$$

$$\geq \operatorname{tr}\left[\rho_{ABC} - \exp\left(\log \rho_{AB} - \log \rho_B + \log \rho_{BC}\right)\right]$$
(30)

We could conclude SSA if $\operatorname{tr}[\exp(\log \rho_{AB} - \log \rho_B + \log \rho_{BC})] \leq 1$.

■ Golden-Thompson $\operatorname{tr} \left[\exp(\log M_1 + \log M_2) \right] \leq \operatorname{tr} [M_1 M_2]$ to Lieb's triple matrix inequality:

$$\operatorname{tr} \left[\exp(\log M_1 - \log M_2 + \log M_3) \right] \le \int_0^\infty d\lambda \operatorname{tr} \left[M_1 (M_2 + \lambda)^{-1} M_3 (M_2 + \lambda)^{-1} \right]$$
 [Lieb 1973]. (31)

- Proof SSA with $M_1:=\rho_{AB},\,M_2:=\rho_B,\,M_3:=\rho_{BC}$ and $\int_0^\infty \mathrm{d}\lambda\;x(x+\lambda)^{-2}=1$. \square
- Idea: for sSSA start with the variational formula

$$D(\rho_{ABC} \| \tau_A \otimes \rho_{BC}) - D(\rho_{AB} \| \tau_A \otimes \rho_B)$$

$$= \sup_{\omega_{ABC} > 0} \operatorname{tr} \left[\rho_{ABC} \log \omega_{ABC} \right] - \log \operatorname{tr} \left[\exp \left(\log \rho_{AB} - \log \rho_B + \log \rho_{BC} + \log \omega_{ABC} \right) \right].$$

Multivariate trace inequalities

Theorem (Multivariate Golden-Thompson, B. et al. 2016)

Let $p \geq 1$, $n \in \mathbb{N}$, and $\{H_k\}_{k=1}^n$ be a set of hermitian matrices. Then, we have

$$\log \left\| \exp\left(\sum_{k=1}^{n} H_{k}\right) \right\|_{p} \leq \int_{-\infty}^{\infty} dt \, \beta_{0}(t) \log \left\| \prod_{k=1}^{n} \exp\left((1+it)H_{k}\right) \right\|_{p}, \tag{33}$$

where
$$||M||_p := \left(\operatorname{tr} \left[\left(M^{\dagger} M \right)^{p/2} \right] \right)^{1/p}$$
 with $\beta_0(t) := \frac{\pi}{2} \left(\cosh(\pi t) + 1 \right)^{-1}$.

Multivariate trace inequalities

Theorem (Multivariate Golden-Thompson, B. et al. 2016)

Let $p \geq 1$, $n \in \mathbb{N}$, and $\{H_k\}_{k=1}^n$ be a set of hermitian matrices. Then, we have

$$\log \left\| \exp\left(\sum_{k=1}^{n} H_{k}\right) \right\|_{p} \leq \int_{-\infty}^{\infty} dt \, \beta_{0}(t) \log \left\| \prod_{k=1}^{n} \exp\left((1+it)H_{k}\right) \right\|_{p}, \tag{33}$$

where
$$||M||_p := \left(\operatorname{tr} \left[\left(M^{\dagger} M \right)^{p/2} \right] \right)^{1/p}$$
 with $\beta_0(t) := \frac{\pi}{2} \left(\cosh(\pi t) + 1 \right)^{-1}$.

■ Proof based on Lie-Trotter expansion $\exp\left(\sum_{k=1}^n H_k\right) = \lim_{r\to 0} \left(\prod_{k=1}^n \exp(rH_k)\right)^{1/r}$ extension of [Araki-Lieb-Thirring 1976/1990]:

Lemma (Multivariate Araki-Lieb-Thirring, B. et al. 2016)

Let $p \ge 1$, $r \in (0,1]$, $n \in \mathbb{N}$, and $\{M_k\}_{k=1}^n$ be a set of positive matrices. Then, we have

$$\log \left\| \left| \prod_{k=1}^{n} M_k^r \right|^{1/r} \right\|_p \le \int_{-\infty}^{\infty} dt \, \beta_r(t) \log \left\| \prod_{k=1}^{n} M_k^{1+it} \right\|_p, \tag{34}$$

with $\beta_r(t) := \frac{\sin(\pi r)}{2r(\cosh(\pi t) + \cos(\pi r))}$.

Complex interpolation theory

Strengthening of Hadamard's three line theorem [Hirschman 1952]:

Let $S:=\{z\in\mathbb{C}:0\leq\mathrm{Re}(z)\leq1\},g:S\to\mathbb{C}$ be uniformly bounded on S, holomorph in the interior of S, and continous on the boundary. Then, we have for $r\in(0,1)$ with $\beta_r(t):=\frac{\sin(\pi r)}{2r(\cosh(\pi t)+\cos(\pi r))}$ that:

$$\log |g(r)| \le \int_{-\infty}^{\infty} dt \, \beta_{1-r}(t) \log |g(it)|^{1-r} + \beta_r(t) \log |g(1+it)|^r$$

$$\le \sup \log |g(it)|^{1-r} + \sup \log |g(1+it)|^r .$$
(36)

Complex interpolation theory

Strengthening of Hadamard's three line theorem [Hirschman 1952]:

Let $S:=\{z\in\mathbb{C}:0\leq\mathrm{Re}(z)\leq1\},g:S\to\mathbb{C}$ be uniformly bounded on S, holomorph in the interior of S, and continous on the boundary. Then, we have for $r\in(0,1)$ with $\beta_r(t):=\frac{\sin(\pi r)}{2r(\cosh(\pi t)+\cos(\pi r))}$ that:

$$\log |g(r)| \le \int_{-\infty}^{\infty} dt \, \beta_{1-r}(t) \log |g(it)|^{1-r} + \beta_r(t) \log |g(1+it)|^r$$
 (35)

$$\leq \sup_{t} \log |g(it)|^{1-r} + \sup_{t} \log |g(1+it)|^{r}$$
 (36)

Stein interpolation for linear operators [Beigi 2013, Wilde 2015, Junge et al. 2015]:

Let $S=\{z\in\mathbb{C}:0\leq \operatorname{Re}(z)\leq 1\}$ and $G:S\to\operatorname{Lin}(\mathcal{H})$ be holomorph in the interior of S and continous on the boundary. For $p_0,p_1\in[1,\infty],\ r\in(0,1)$, define p_r with $1/p_r=(1-r)/p_0+r/p_1$. If $z\mapsto \|G(z)\|_{p_{\operatorname{Re}(z)}}$ is uniformly bounded on S, then we have for $\beta_r(t)$ as above:

$$\log \|G(r)\|_{p_r} \le \int_{-\infty}^{\infty} dt \left(\beta_{1-r}(t) \log \|G(it)\|_{p_0}^{1-r} + \beta_r(t) \log \|G(1+it)\|_{p_1}^r\right). \tag{37}$$

Proof of multivariate trace inequalities

Lemma (Multivariate Araki-Lieb-Thirring, B. et al. 2016)

Let $p \ge 1$, $r \in (0,1]$, $n \in \mathbb{N}$, and $\{M_k\}_{k=1}^n$ be a set of positive matrices. Then, we have

$$\log \left\| \left| \prod_{k=1}^{n} M_k^r \right|^{1/r} \right\|_p \le \int_{-\infty}^{\infty} dt \, \beta_r(t) \log \left\| \prod_{k=1}^{n} M_k^{1+it} \right\|_p. \tag{38}$$

Proof of multivariate trace inequalities

Lemma (Multivariate Araki-Lieb-Thirring, B. et al. 2016)

Let $p \ge 1$, $r \in (0,1]$, $n \in \mathbb{N}$, and $\{M_k\}_{k=1}^n$ be a set of positive matrices. Then, we have

$$\log \left\| \left| \prod_{k=1}^{n} M_k^r \right|^{1/r} \right\|_p \le \int_{-\infty}^{\infty} dt \, \beta_r(t) \log \left\| \prod_{k=1}^{n} M_k^{1+it} \right\|_p. \tag{38}$$

Proof: Use Stein-Hirschman for $1/p_r = (1-r)/p_0 + r/p_1$:

$$\log \|G(r)\|_{p_r} \le \int_{-\infty}^{\infty} dt \left(\beta_{1-r}(t) \log \|G(it)\|_{p_0}^{1-r} + \beta_r(t) \log \|G(1+it)\|_{p_1}^r\right), \tag{39}$$

and choose

$$G(z) := \prod_{k=1}^{n} M_k^z = \prod_{k=1}^{n} \exp(z \log M_k)$$
 sowie $p_0 := \infty, \ p_1 := p, \ p_r = \frac{p}{r}$. (40)

For positive matrices M_k , M_k^{it} becomes unitary, $\log \|\cdot\|_{p_0}^{1-r}$ in (39) becomes zero, and (38) follows. \square

Proof of multivariate trace inequalities

Lemma (Multivariate Araki-Lieb-Thirring, B. et al. 2016)

Let $p \ge 1$, $r \in (0,1]$, $n \in \mathbb{N}$, and $\{M_k\}_{k=1}^n$ be a set of positive matrices. Then, we have

$$\log \left\| \left| \prod_{k=1}^{n} M_k^r \right|^{1/r} \right\|_p \le \int_{-\infty}^{\infty} dt \, \beta_r(t) \log \left\| \prod_{k=1}^{n} M_k^{1+it} \right\|_p. \tag{38}$$

■ Proof: Use Stein-Hirschman for $1/p_r = (1-r)/p_0 + r/p_1$:

$$\log \|G(r)\|_{p_r} \le \int_{-\infty}^{\infty} dt \left(\beta_{1-r}(t) \log \|G(it)\|_{p_0}^{1-r} + \beta_r(t) \log \|G(1+it)\|_{p_1}^r\right), \tag{39}$$

and choose

$$G(z) := \prod_{k=1}^{n} M_k^z = \prod_{k=1}^{n} \exp(z \log M_k) \quad \text{sowie} \quad p_0 := \infty, \ p_1 := p, \ p_r = \frac{p}{r}. \tag{40}$$

For positive matrices M_k , M_k^{it} becomes unitary, $\log \|\cdot\|_{p_0}^{1-r}$ in (39) becomes zero, and (38) follows. \square

Multivariate Golden-Thompson from Lie-Trotter expansion.

Proof of sSSA/sMONO

■ The proof of sSSA follows from multivariate Golden-Thompson for p=2 and n=4:

$$\operatorname{tr}\left[\exp(\log M_{1} - \log M_{2} + \log M_{3} + \log M_{4})\right] \\
\leq \int dt \, \beta_{0}(t) \operatorname{tr}\left[M_{1} M_{2}^{-(1+it)/2} M_{3}^{(1+it)/2} M_{4} M_{3}^{(1-it)/2} M_{2}^{-(1-it)/2}\right] .$$
(41)

<u>Remark:</u> Lieb's triple matrix inequality is a relaxation of the case p=2 and n=3!

Proof of sSSA/sMONO

The proof of sSSA follows from multivariate Golden-Thompson for p=2 and n=4:

$$\operatorname{tr}\left[\exp(\log M_{1} - \log M_{2} + \log M_{3} + \log M_{4})\right]$$

$$\leq \int dt \,\beta_{0}(t)\operatorname{tr}\left[M_{1}M_{2}^{-(1+it)/2}M_{3}^{(1+it)/2}M_{4}M_{3}^{(1-it)/2}M_{2}^{-(1-it)/2}\right]. \tag{41}$$

Remark: Lieb's triple matrix inequality is a relaxation of the case p=2 and n=3!

■ Proof: Choose $M_1 := \rho_{AB}$, $M_2 := \rho_B$, $M_3 := \rho_{BC}$, $M_4 := \omega_{ABC}$, and thus

$$D(\rho_{ABC} \| \tau_A \otimes \rho_{BC}) - D(\rho_{AB} \| \tau_A \otimes \rho_B) = D(\rho_{ABC} \| \exp(\log \rho_{AB} - \log \rho_B + \log \rho_{BC}))$$

$$= \sup_{\omega_{ABC} > 0} \operatorname{tr} \left[\rho_{ABC} \log \omega_{ABC} \right] - \log \operatorname{tr} \left[\exp \left(\log \rho_{AB} - \log \rho_{B} + \log \rho_{BC} + \log \omega_{ABC} \right) \right]$$

$$= \sup_{\omega_{ABC} > 0} \sup_{\omega_{ABC} = 0} \sup_{\omega_{ABC}$$

$$\geq \sup_{\omega_{ABC}>0} \operatorname{tr}\left[\rho_{ABC}\log\omega_{ABC}\right] - \int \operatorname{d}t \; \beta_0(t) \log \operatorname{tr}\left[\omega_{ABC}\rho_{BC}^{\frac{1+it}{2}}\rho_B^{-\frac{1+it}{2}}\rho_{AB}\rho_B^{-\frac{1-it}{2}}\rho_{BC}^{\frac{1+it}{2}}\right]$$

$$\geq D_K \left(\rho_{ABC} \| \int dt \, \beta_0(t) \rho_{BC}^{\frac{1+it}{2}} \rho_B^{-\frac{1+it}{2}} \rho_{AB} \rho_B^{-\frac{1-it}{2}} \rho_{BC}^{\frac{1+it}{2}} \right) \tag{45}$$

$$= D_K \left(\rho_{ABC} \| \mathcal{R}_{B \to BC} (\rho_{AB}) \right) \quad \Box \tag{46}$$

(44)

(42)

Strengthened entropy inequalities (sSSA/sMONO) through multivariate trace inequalities: asymptotic spectral pinching, complex interpolation theory with Stein-Hirschman.

- Strengthened entropy inequalities (sSSA/sMONO) through multivariate trace inequalities: asymptotic spectral pinching, complex interpolation theory with Stein-Hirschman.
- More multivariate trace inequalities [Hiai et al. 2016]? For example extension of complementary Golden-Thompson:

$$tr[M_1 \# M_2] \le tr[\exp(\log M_1 + \log M_2)] \le tr[M_1 M_2]$$
 [Hiai & Petz 1993]. (47)

with matrix geometric mean $M_1\#M_2:=M_1^{1/2}\left(M_1^{-1/2}M_2M_1^{-1/2}\right)^{1/2}M_1^{1/2}.$

- Strengthened entropy inequalities (sSSA/sMONO) through multivariate trace inequalities: asymptotic spectral pinching, complex interpolation theory with Stein-Hirschman.
- More multivariate trace inequalities [Hiai et al. 2016]? For example extension of complementary Golden-Thompson:

$$tr[M_1 \# M_2] \le tr[exp(\log M_1 + \log M_2)] \le tr[M_1 M_2]$$
 [Hiai & Petz 1993]. (47)

with matrix geometric mean $M_1\#M_2:=M_1^{1/2}\left(M_1^{-1/2}M_2M_1^{-1/2}\right)^{1/2}M_1^{1/2}.$

■ Improving on [Dupuis & Wilde 2016], tight upper bound for SSA? Conjecture:

$$D_{K} (\rho_{ABC} \| \sigma_{ABC}) \le D(\rho_{ABC} \| \rho_{BC}) - D(\rho_{AB} \| \rho_{B}) \le D_{B} (\rho_{ABC} \| \sigma_{ABC}) ,$$
(48)

with $\sigma_{ABC} := (\mathcal{I}_A \otimes \mathcal{R}_{B \to BC}) (\rho_{AB})$ and [Belavkin & Staszewski 1982]

$$D_K(\rho\|\sigma) \le D(\rho\|\sigma) \le D_B(\rho\|\sigma) := \operatorname{tr}\left[\rho \log\left(\rho^{1/2}\sigma^{-1}\rho^{1/2}\right)\right]. \tag{49}$$

- Strengthened entropy inequalities (sSSA/sMONO) through multivariate trace inequalities: asymptotic spectral pinching, complex interpolation theory with Stein-Hirschman.
- More multivariate trace inequalities [Hiai et al. 2016]? For example extension of complementary Golden-Thompson:

$$tr[M_1 \# M_2] \le tr[exp(\log M_1 + \log M_2)] \le tr[M_1 M_2]$$
 [Hiai & Petz 1993]. (47)

with matrix geometric mean $M_1\#M_2:=M_1^{1/2}\left(M_1^{-1/2}M_2M_1^{-1/2}\right)^{1/2}M_1^{1/2}.$

■ Improving on [Dupuis & Wilde 2016], tight upper bound for SSA? Conjecture:

$$D_{K} (\rho_{ABC} \| \sigma_{ABC}) \le D(\rho_{ABC} \| \rho_{BC}) - D(\rho_{AB} \| \rho_{B}) \le D_{B} (\rho_{ABC} \| \sigma_{ABC}) ,$$
(48)

with $\sigma_{ABC} := (\mathcal{I}_A \otimes \mathcal{R}_{B \to BC}) (\rho_{AB})$ and [Belavkin & Staszewski 1982]

$$D_K(\rho\|\sigma) \le D(\rho\|\sigma) \le D_B(\rho\|\sigma) := \operatorname{tr}\left[\rho \log\left(\rho^{1/2}\sigma^{-1}\rho^{1/2}\right)\right]. \tag{49}$$

Mark Wilde at 4pm: Universal Recoverability in Quantum Information.