Quantum Music: Applying Quantum Theory to Music Theory and Composition

Yesé J. Felipe

California State University, Los Angeles

QMATH 13, Georgia Tech, October 10, 2016
Table of Contents

1. Introduction: What is Music?
2. How to quantize Music?
3. Melody: A simple example
4. Harmony
5. Challenges and Future Work
6. Bibliography
Music is a collection of sounds, or *tones*, that feature pitch, beat, and volume. Music consists of 3 elements:

- **Melody**: A set of musical notes, or tones, that are played in succession.

- **Harmony**: A set of musical notes that are played simultaneously.

- **Rhythm**: Duration of these sounds (or lack of sounds) in time.
Traditionally, sounds called *whole tones* are represented as follows:

For a single octave, all of the sounds used in music are represented by the *Chromatic scale*:
Two elements of music notation that are used to denote pitch are \flat, the *flat* and \sharp, the *sharp*.

An alternate way to represent tones is by using the number 0 to represent no sound, and the numbers 1 – 12 as follows: $C \rightarrow 1$, $C\sharp \rightarrow 2$, $D \rightarrow 3$, \ldots, $A\flat \rightarrow 11$, $B \rightarrow 12$
How to quantize Music?

A quantum tone can be represented by a quantum musical state $|\psi\rangle$. A quantum musical state would be defined as:

$$|\psi\rangle = \alpha_0 |\psi_0\rangle + \alpha_1 |\psi_1\rangle + \alpha_2 |\psi_2\rangle + \ldots + \alpha_{12} |\psi_{12}\rangle$$

(1)

With $|\psi\rangle \in \mathbb{C}^{13}$ and $\sum_i |\alpha_i|^2 = 1$. Here, $|\psi_i\rangle$ are the orthogonal unit vectors:

$|\psi_0\rangle = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$, $|\psi_1\rangle = \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}$, $|\psi_{12}\rangle = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$
We can also define a flat and sharp operators such that:

\[\hat{b} |\psi_i\rangle = \psi_{i-1} |\psi_{i-1}\rangle \]
\[\hat{\#} |\psi_i\rangle = \psi_{i+1} |\psi_{i+1}\rangle \]
Melody: A simple example

We start by constructing a simple system of two quantum tone states

\[
|\psi\rangle_1 = \frac{1}{\sqrt{2}} |\psi_0\rangle + \frac{1}{\sqrt{2}} |\psi_1\rangle \tag{4}
\]

\[
|\psi\rangle_2 = \frac{1}{\sqrt{2}} |\psi_0\rangle + \frac{1}{\sqrt{2}} |\psi_1\rangle \tag{5}
\]
The system would have the following 4 possible outcomes, with equal probabilities:
Similarly for the following system quantum tone states,

$$|\psi\rangle_3 = \frac{1}{\sqrt{3}} |\psi_0\rangle + \frac{1}{\sqrt{3}} |\psi_1\rangle + \frac{1}{\sqrt{3}} |\psi_6\rangle$$ \hspace{1cm} (6)

$$|\psi\rangle_4 = \frac{1}{\sqrt{3}} |\psi_0\rangle + \frac{1}{\sqrt{3}} |\psi_1\rangle + \frac{1}{\sqrt{3}} |\psi_6\rangle$$ \hspace{1cm} (7)
The system would have the following 9 possible outcomes, with equal probabilities:
An advantage of this representation is that melodies can be composed by applying transformations, to tone states. In the previous example,

$$|\psi\rangle_4 = \hat{1} |\psi\rangle_3$$ (8)
Quantum Harmony can be thought as an entangled state of more than one quantum note, and could be represented using quantum chords.
Challenges and Future Work

- Incorporating rhythm.
- Incorporating volume.
- Finally, how to implement all of these ideas?
Bibliography

- V. Putz, K. Svozil
 Quantum Music.
 arXiv:1503.09045v2

- D.E. Parson
 Quantum Composition and Improvisation.
 aaai.org/ocs/index.php/AIIDE/AIIDE12/paper/view/5473

- C. Cohen-Tannoudji, B. Diu, F. Laloe
 Quantum Mechanics.

- J.P. Clendinning, E.W. Marvin
 The Musician’s Guide to Theory and Analysis.