Large Deviation Principles for Weakly Interacting Fermions

N. J. B. Aza

Departamento de Física Matemática, Universidade de São Paulo

Joint work with J.-B. Bru, W. de Siqueira Pedra and L. C. P. A. M. Müssnich

October 08, 2016
Observe that for a state on the C^*-algebra A and $A \in A$ a selfadjoint element, there is a unique probability measure $\mu_{\rho, A}$ on \mathbb{R} such that $\mu_{\rho, A}(\text{spec}(A)) = 1$ and, for all continuous functions $f: \mathbb{R} \rightarrow \mathbb{C}$,

$$\rho(f(A)) = \int_{\mathbb{R}} f(x) \mu_{\rho, A}(dx).$$

$\mu_A = \mu_{\rho, A}$ is the measure associated to ρ and A. For a sequence of selfadjoints $\{A_l\}_{l \in \mathbb{R}^+}$ of A, and a state ρ, we say that these satisfy a Large Deviation Principle (LDP), with scale $|\Lambda_l|$, if, for all Borel measurable $\Gamma \subset \mathbb{R}$,

$$-\inf_{x \in \mathring{\Gamma}} I(x) \leq \liminf_{l \to \infty} \frac{1}{|\Lambda_l|} \log \mu_{A_l}(\Gamma) \leq \limsup_{l \to \infty} \frac{1}{|\Lambda_l|} \log \mu_{A_l}(\Gamma) \leq -\inf_{x \in \Gamma} I(x).$$
Observe that for ρ a state on the C^*–algebra \mathcal{A} and $A \in \mathcal{A}$ a selfadjoint element, there is a unique probability measure $\mu_{\rho,A}$ on \mathbb{R} such that $\mu_{\rho,A}(\text{spec}(A)) = 1$ and, for all continuous functions $f : \mathbb{R} \to \mathbb{C}$,

$$\rho(f(A)) = \int_{\mathbb{R}} f(x) \mu_{\rho,A}(dx).$$

$\mu_A \doteq \mu_{\rho,A}$ is the measure associated to ρ and A. For a sequence of selfadjoints $\{A_l\}_{l \in \mathbb{R}^+}$ of \mathcal{A}, and a state ρ, we say that these satisfy a Large Deviation Principle (LDP), with scale $|\Lambda_l|$, if, for all Borel measurable $\Gamma \subset \mathbb{R}$,

$$- \inf_{x \in \Gamma} \mathcal{I}(x) \leq \liminf_{l \to \infty} \frac{1}{|\Lambda_l|} \log \mu_{A_l}(\Gamma) \leq \limsup_{l \to \infty} \frac{1}{|\Lambda_l|} \log \mu_{A_l}(\Gamma) \leq - \inf_{x \in \Gamma} \mathcal{I}(x)$$
Large Deviation Theory and Quantum Lattice Systems

- To find an LDP we desire to use the Gärtner–Ellis Theorem (GET) to \(\mu_{A_l} \), through the scaled cumulant generating function

\[
\bar{f}(s) = \lim_{l \to \infty} \frac{1}{|\Lambda_l|} \log \rho(e^{s|\Lambda_l|A_l}), \quad s \in \mathbb{R}.
\]

- If \(\bar{f} \) exists and is differentiable, then the good rate function \(\mathcal{I} \) is the Legendre–Fenchel transform of \(\bar{f} \).

- In the case of lattice fermions we represent \(\bar{f} \) as a Berezin–integral and analyse it using “tree expansions”. The scale \(|\Lambda_l|\) will be then the volume of the boxes \(\Lambda_l \):

\[
\Lambda_l \doteq \{(x_1, \ldots, x_d) \in \mathbb{Z}^d : |x_1|, \ldots, |x_d| \leq l\} \in \mathcal{P}_f(\mathbb{Z}^d).
\]

- For lattice fermions, \(\mathcal{A} \) is the CAR \(C^* \)-algebra generated by the identity \(1 \) and \(\{a_{s,x}\}_{s,x \in S} \). \(\mathcal{L} \doteq S \times \mathbb{Z}^d \) where \(S \) is the set of Spins of single fermions. However, our proofs do not depend on the particular choice of \(S \).
Large Deviation Theory and Quantum Lattice Systems

- CAR:

\[\{a_x, a_{x'}\} = 0, \quad \{a_x, a^*_x\} = \delta_{x,x'} 1. \]

- \(\mathcal{A}_\Lambda \subset \mathcal{A} \) is the \(C^* \)-subalgebra generated \(1 \) and \(\{a_x\}_{x \in \Lambda} \).

- An interaction \(\Phi \) is a map \(\mathcal{P}_f(\mathbb{Z}^d) \rightarrow \mathcal{A} \) s.t. \(\Phi_\Lambda = \Phi^*_\Lambda \in \mathcal{A}^+ \cap \mathcal{A}_\Lambda \) and \(\Phi_\emptyset = 0 \).

- \(\Phi \) is of finite range if for \(\Lambda \in \mathcal{P}_f(\mathbb{Z}^d) \) and some \(R > 0, \text{diam} \ Lambda > R \rightarrow \Phi_\Lambda = 0 \).

- For any interaction \(\Phi \), we define the space average \(K_\Lambda^\Phi \in \mathcal{A}_\Lambda \) by

\[
K_\Lambda^\Phi = \frac{1}{|\Lambda_i|} \sum_{\Lambda \in \mathcal{P}_f(\mathbb{Z}^d), \Lambda \in \Lambda_i} \Phi_\Lambda.
\]
Main Result

Note that finite range interactions define equilibrium (KMS) states of \mathcal{A}.

Theorem (A., Bru, Müssnich, Pedra)

Let $\beta > 0$ and consider any finite range translation invariant interaction $\Psi = \Psi_0 + \Psi_1$. If the interparticle component Ψ_1 (Ψ_0 is the free part) is small enough (depending on β), then any invariant equilibrium state ρ of Ψ and the sequence of averages K_l^Φ of ANY translation invariant interaction Φ, have an LDP and $s \mapsto \bar{f}(s)$ is analytic at small s.
Main Result

Remarks

1. Note that, in contrast to previous results, we do not impose β to be small or Φ (defining K_i^Φ) to be an one–site interaction.

2. Uniqueness of KMS states is not used.

4. Determinant bounds or study of Large Determinants.

5. Direct representation of \bar{f} by Berezin–integrals. In particular we do not use the correlation functions.

6. Beyond the LDP, the analyticity of $\bar{f}(\cdot)$ together with the Bryc Theorem implies the Central Limit Theorem for the system.
Main Result

Sketch of the proof.

\[
\bar{f}(s) = \lim_{l \to \infty} \lim_{l' \to \infty} \frac{1}{\Lambda_l} \log \frac{\text{tr}(e^{-\beta H_{l'}} e^{sK_l})}{\text{tr}(e^{-\beta H_{l'}})}.
\]
Main Result

Sketch of the proof.

1. \[\bar{f}(s) = \lim_{l \to \infty} \lim_{l' \to \infty} \frac{1}{|\Lambda_l|} \log \frac{\text{tr}(e^{-\beta H_{l'}} e^{s K_l})}{\text{tr}(e^{-\beta H_{l'}})}. \]

2. From a Feynmann–Kac–like formula for traces, we write the KMS state as a Berezin–integral

\[
\frac{\text{tr}_{\Lambda^* \mathcal{D}}(e^{-\beta H_{l'}} e^{s K_l})}{\text{tr}_{\Lambda^* \mathcal{D}}(e^{-\beta H_{l'}^{(0)}})} = \lim_{n \to \infty} \int d\mu_{C_{l''}^{(n)}}(\mathcal{D}^{(n)}) e^{\mathscr{H}_{l,l''}^{(n)}}.
\]
Main Result

Sketch of the proof.

1 \[f(s) = \lim_{l \to \infty} \lim_{l' \to \infty} \frac{1}{|\Lambda|} \log \frac{\text{tr}(e^{-\beta H_{l'}} e^{s K_l})}{\text{tr}(e^{-\beta H_{l'}})}. \]

2 From a Feynmann–Kac–like formula for traces, we write the KMS state as a Berezin–integral

\[\frac{\text{tr}_{\wedge^* S_3}(e^{-\beta H_{l'}} e^{s K_l})}{\text{tr}_{\wedge^* S_3}(e^{-\beta H_{l'}^{(0)}})} = \lim_{n \to \infty} \int d\mu_{\mathcal{C}_l^{(n)}}(S_3^{(n)}) e^{\mathcal{W}_{l, l'}.} \]

3 The covariance \(C_l^{(n)} \) satisfies:

\[\left| \det \left[(\varphi_a^{(k_a)}) C_l^{(n)} (\varphi_b^{(k_b)}) \right]_{a,b=1}^{m} \right| \leq \left(\prod_{a=1}^{m} \| \varphi_a^* \|_{S_3^*} \right) \left(\prod_{b=1}^{m} \| \varphi_b \|_{S_3} \right). \]
Main Result

Sketch of the proof.

1. \(\bar{f}(s) = \lim_{l \to \infty} \lim_{l' \to \infty} \frac{1}{|\Lambda_l|} \log \frac{\text{tr}(e^{-\beta H_{l'}} e^{sK_l})}{\text{tr}(e^{-\beta H_{l'}})}. \)

2. From a Feynmann–Kac–like formula for traces, we write the KMS state as a Berezin–integral

\[
\frac{\text{tr}^\wedge_* \delta_j(e^{-\beta H_{l'}} e^{sK_l})}{\text{tr}^\wedge_* \delta_j(e^{-\beta H_{l'}^{(0)}})} = \lim_{n \to \infty} \int d\mu C^{(n)}_{\mu} (\delta_j^{(n)}) e^{\mathcal{W}_l^{(n)}}.
\]

3. The covariance \(C^{(n)}_{\mu} \) satisfies:

\[
\left| \det \left[\left(\varphi^*_a \right)^{(k_a)} \left(C^{(n)}_{\mu} \left(\varphi^{(k_b)}_b \right) \right) \right]_{a,b=1}^m \right| \leq \left(\prod_{a=1}^m \| \varphi^*_a \|_{\delta_j^*} \right) \left(\prod_{b=1}^m \| \varphi_b \|_{\delta_j} \right).
\]

Use Brydges–Kennedy Tree expansions (BKTE) to verify GET. BKTE are solution of an infinite hierarchy of coupled ODEs...
Perspectives and Questions

Perspectives:

1. Quantum Hypothesis Testing? Open problems, e.g., study thermodynamic limit of the relative entropy between equilibrium state $\omega^\beta_\Lambda \in \mathcal{A}_\Lambda$ and translation invariant state ω_Λ.
2. Related problems to our approach.
3. ...
Perspectives and Questions

Perspectives:

1 Quantum Hypothesis Testing? Open problems, e.g., study thermodynamic limit of the relative entropy between equilibrium state $\omega^\beta_\Lambda \in \mathcal{A}_\Lambda$ and translation invariant state ω_Λ.

2 Related problems to our approach.

3 . . .

Open Questions:

1 LDP for time correlation (transport coefficients)?

2 Systems in presence of disorder?

3 What about LDP for commutators of averages $i[K^{\Phi_1}, K^{\Phi_2}]$ in place of simple averages K^{Φ}? (Also related to transport)

4 . . .
Thank you!
Supporting facts

1. For any invertible operator $C \in \mathcal{B}(\mathfrak{H})$ and $\xi \in \wedge^* (\mathfrak{H} \oplus \tilde{\mathfrak{H}})$, the Gaussian Grassmann integral: $\int d\mu_C (\mathfrak{H}) : \wedge^* (\mathfrak{H} \oplus \tilde{\mathfrak{H}}) \rightarrow \mathbb{C} \mathbf{1}$ with covariance C, is defined by

$$\int d\mu_C (\mathfrak{H}) \xi = \det (C) \int d (\mathfrak{H}) e^{\langle \mathfrak{H}, C^{-1} \mathfrak{H} \rangle} \wedge \xi.$$

2. $\int d\mu_C (\mathfrak{H}) \mathbf{1} = \mathbf{1}$ and for any $m, n \in \mathbb{N}$ and all $\psi_1, \ldots, \psi_m \in \mathfrak{H}$, $\varphi_1, \ldots, \varphi_n \in \mathfrak{H}$,

$$\int d\mu_C (\mathfrak{H}) \psi_1 \cdots \psi_m \varphi_1 \cdots \varphi_m = \det [\varphi_k (C \varphi_l)]_{k,l=1}^m \delta_{m,n} \mathbf{1}$$

3. For all $N \in \mathbb{N}$ and $A_0, \ldots, A_{N-1} \in \mathcal{B}(\wedge^* \mathfrak{H})$,

$$\text{Tr}_{\wedge^* \mathfrak{H}} (A_0 \cdots A_{N-1}) \mathbf{1} = \left(\prod_{k=0}^{N-1} \int d (\mathfrak{H}^{(k)}) \right) E_{\mathfrak{H}}^{(N)} \left(\prod_{k=0}^{N-1} \varphi^{(k)} (A_k) \right),$$

where $E_{\mathfrak{H}}^{(N)} = e^{\langle \mathfrak{H}^{(0)}, \mathfrak{H}^{(0)} \rangle + \langle \mathfrak{H}^{(0)}, \mathfrak{H}^{(N-1)} \rangle + \sum_{k=1}^{N-1} (\langle \mathfrak{H}^{(k)}, \mathfrak{H}^{(k)} \rangle - \langle \mathfrak{H}^{(k)}, \mathfrak{H}^{(k-1)} \rangle)}$,

$\varphi^{(k)} = \varphi^{(k,0)} \circ \varphi : \mathcal{B}(\wedge^* \mathfrak{H}) \rightarrow \wedge^* (\mathfrak{H}^{(k)} \oplus \tilde{\mathfrak{H}}^{(k)})$ and for $i, j, k, l \in \{0, \ldots, N\}$, $\varphi^{(k,l)} : \wedge^* (\mathfrak{H}^{(i)} \oplus \tilde{\mathfrak{H}}^{(j)}) \rightarrow \wedge^* (\mathfrak{H}^{(k)} \oplus \tilde{\mathfrak{H}}^{(l)}).$