Matrix product approximations to multipoint functions in two-dimensional conformal field theory

Robert Koenig (TUM) and Volkher B. Scholz (Ghent University)
based on arXiv:1509.07414 and 1601.00470 (published in PRL)

QMATH13
GeorgiaTech, Atlanta
October 2016
Goal

• Understand the entanglement structure of quantum field theories using tensor network methods
Goal

• Understand the entanglement structure of quantum field theories using tensor network methods

• Tensor networks model the entanglement properties of many body systems and are successfully applied in condensed matter physics
Goal

• Understand the entanglement structure of quantum field theories using tensor network methods

 • Tensor networks model the entanglement properties of many body systems and are successfully applied in condensed matter physics

• What about quantum field theories?
Goal

• Understand the entanglement structure of quantum field theories using tensor network methods

• Tensor networks model the entanglement properties of many body systems and are successfully applied in condensed matter physics

• What about quantum field theories?

• States of the quantum field theory and tensor network states live in different Hilbert spaces: how to measure closeness?
How to approximate a quantum field theory?
How to approximate a quantum field theory?

- Focus on physical quantities: correlation functions
How to approximate a quantum field theory?

- Focus on physical quantities: correlation functions
- If tensor networks can approximately reproduce correlation functions of quantum field theories, then we can use them to understand the entanglement structure of quantum field theories.
How to approximate a quantum field theory?

• Focus on physical quantities: correlation functions

• If tensor networks can approximately reproduce correlation functions of quantum field theories, then we can use them to understand the entanglement structure of quantum field theories.

• Start with simplest interesting class of quantum field theories: 1+1 dimensional unitary Conformal Field Theories (a quantum field theory defined on the circle with conformal symmetry)
Recap: Matrix product states

- Tensor network states for spin chains:
Recap: Matrix product states

- Tensor network states for spin chains: maximally entangled pairs of (bond) dimension D are placed between the physical particles (physical dimension d)
Recap: Matrix product states

- Tensor network states for spin chains: maximally entangled pairs of (bond) dimension D are placed between the physical particles (physical dimension d) and are contracted by a $D \times D \times d$ dimensional tensor.
Recap: Matrix product states

- Tensor network states for spin chains: maximally entangled pairs of (bond) dimension D are placed between the physical particles (physical dimension d) and are contracted by a $D \times D \times d \times d$ dimensional tensor.

- Correlation functions can be computed efficiently (in D) and reduce to the computation of a sequence of completely positive maps on matrices of dimension D.

![Diagram of tensor network states for spin chains.](image-url)
Main result

Correlation functions of 1+1 dimensional unitary Conformal Field Theories can be arbitrarily well approximated by correlations functions of Matrix Product states.
Main result

Correlation functions of 1+1 dimensional unitary Conformal Field Theories can be arbitrarily well approximated by correlations functions of Matrix Product states.

Scaling of Parameters:
number of fields n, UV cutoff d (measured in terms of energy), approximation error ε, C constant depending on CFT (not necessarily central charge)

<table>
<thead>
<tr>
<th>scaling of bond dimension</th>
<th>fixed n, UV cutoff d</th>
<th>fixed ε</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\log(D)$</td>
<td>$\sim \log(1/\varepsilon) C \frac{n}{d}$</td>
<td>$\sim \sqrt{Cn}$</td>
</tr>
</tbody>
</table>
Achievements & shortcomings

- We obtain a sequence of explicit Tensors describing Matrix product states, which better and better satisfy the conformal symmetry.
Achievements & shortcomings

• We obtain a sequence of explicit Tensors describing Matrix product states, which better and better satisfy the conformal symmetry

• Proof is mathematically rigorous and constructive; holds for most unitary Conformal Field Theories
Achievements & shortcomings

• We obtain a sequence of explicit Tensors describing Matrix product states, which better and better satisfy the conformal symmetry

• Proof is mathematically rigorous and constructive; holds for most unitary Conformal Field Theories

• However, the parameter scaling is worse than would could be expected from entropic arguments [Cardy&Calabrese, Holzhey et. al.,..]
Achievements & shortcomings

• We obtain a sequence of explicit Tensors describing Matrix product states, which better and better satisfy the conformal symmetry.

• Proof is mathematically rigorous and constructive; holds for most unitary Conformal Field Theories.

• However, the parameter scaling is worse than would could be expected from entropic arguments [Cardy&Calabrese, Holzhey et. al.,...]

• Uses the language of Vertex operator algebras: first introduced by Borcherds in his proof of the Moonshine conjecture.
More Symmetries: Wess-Zumino-Witten models

- In addition to conformal symmetries, WZW models possess an additional local symmetry given by an affine Lie algebra based on a simple compact Lie group.
More Symmetries: Wess-Zumino-Witten models

• In addition to conformal symmetries, WZW models possess an additional local symmetry given by an affine Lie algebra based on a simple compact Lie group.

• These additional symmetries carry over to the MPS Tensors; leads to a group invariant MPS.
More Symmetries: Wess-Zumino-Witten models

• In addition to conformal symmetries, WZW models possess an additional local symmetry given by an affine Lie algebra based on a simple compact Lie group.

• These additional symmetries carry over to the MPS Tensors; leads to a group invariant MPS.

• Moreover, the interactions (fusion rules) are completely described already in the lowest level; the higher order Tensors are only needed to model the conformal and affine symmetries.
Proof sketch: regularization

- identify states with Hilbert-Schmidt operators on the chiral theory; field operators become linear maps: need to approximate by finite-dimensional ones

\[\langle \phi_1(x_1), \phi_2(x_2), \ldots, \phi_n(x_n) \rangle \]
Proof sketch: regularization

- identify states with Hilbert-Schmidt operators on the chiral theory; field operators become linear maps: need to approximate by finite-dimensional ones

- a finite UV cutoff regularises the unbounded field operators and turns them into bounded operators

\[
< \Phi_1(x_1) \leftrightarrow \Phi_2(x_2) \ldots \Phi_n(x_n) >
\]

\[|x_1 - x_2| > d\]
Proof sketch: regularization

• identify states with Hilbert-Schmidt operators on the chiral theory; field operators become linear maps: need to approximate by finite-dimensional ones

• a finite UV cutoff regularises the unbounded field operators and turns them into bounded operators

\[<\phi_1(x_1)\leftrightarrow\phi_2(x_2)\ldots\phi_n(x_n)>\]

\[|x_1 - x_2| > d\]

• techniques: use results of Wassermann for WZW models (explicit bounds), and the existence of genus-1 correlation functions for general CFTs [Zhu, Huang]
Proof sketch: renormalization

Bounded field operator
\(\phi(x) \): can change the energy by an arbitrary amount

Energy levels of the conformal Hamiltonian
Proof sketch: renormalization

Bounded field operator
\(\phi(x) \): can change the energy by an arbitrary amount

\[\Phi_1(x_1) \]

Energy levels of the conformal Hamiltonian
Proof sketch: renormalization

Bounded field operator \(\phi(x) \): can change the energy by an arbitrary amount

\[
\begin{align*}
\phi_1(x_1) & \quad \phi_2(x_2) \\
\vdots & \quad \vdots \\
\end{align*}
\]

Energy levels of the conformal Hamiltonian...
Proof sketch: renormalization

Bounded field operator $\phi(x)$: can change the energy by an arbitrary amount.

Precision Truncated bounded field operator $\phi^{\text{tr}}(x)$ can only change the energy by a fixed amount.

Energy levels of the conformal Hamiltonian \approx
Proof sketch: renormalization

Bounded field operator $\phi(x)$: can change the energy by an arbitrary amount

Precision Truncated bounded field operator $\phi^{tr}(x)$ can only change the energy by a fixed amount

Energy levels of the conformal Hamiltonian

$\phi_{1}(x_{1}) \quad \phi_{2}(x_{2}) \quad \approx \quad \phi_{1}^{tr}(x_{1})$
Proof sketch: renormalization

Bounded field operator \(\phi(x) \): can change the energy by an arbitrary amount

\[
\begin{align*}
\phi_1(x_1) & \quad \phi_2(x_2) \\
\vdots & \quad \vdots \\
\end{align*}
\]

Energy levels of the conformal Hamiltonian

\(\phi_{1\text{tr}}(x_1) \quad \phi_{2\text{tr}}(x_2) \)

\(\approx \)

\(\phi_{1\text{tr}}(x_1) \quad \phi_{2\text{tr}}(x_2) \)

\(\approx \)

\(\phi_{1\text{tr}}(x_1) \quad \phi_{2\text{tr}}(x_2) \)

Precision Truncated bounded field operator \(\phi^{\text{tr}}(x) \) can only change the energy by a fixed amount
Summary & Outlook

- Correlation functions of CFTs can be approximated by those from MPS
Summary & Outlook

• Correlation functions of CFTs can be approximated by those from MPS

• Our Approximations are constructive, provide rigorous error bounds and respect additional symmetries (WZW)
Summary & Outlook

• Correlation functions of CFTs can be approximated by those from MPS

• Our Approximations are constructive, provide rigorous error bounds and respect additional symmetries (WZW)

• Can be analysed further to understand low energy states of CFTs in quantum information theoretic terms (connection to quantum error correction?)
Summary & Outlook

- Correlation functions of CFTs can be approximated by those from MPS
- Our Approximations are constructive, provide rigorous error bounds and respect additional symmetries (WZW)
- Can be analysed further to understand low energy states of CFTs in quantum information theoretic terms (connection to quantum error correction?)
- Generalisation to MERA (multiscale entanglement renormalization Ansatz) seems possible and may provide better parameter scaling