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Metals

Conventional quantum matter:

1. Ground states connected adiabatically to
independent electron states

2. Boltzmann-Landau theory of quasiparticles

LuttingerÕs theorem: 
volume enclosed by 
the Fermi surface = 
density of all electrons 
(mod 2 per unit cell).
Obeyed in overdoped 
cuprates



Topological quantum matter:

1. Ground states disconnected from independent
electron states: many-particle entanglement

2. Boltzmann-Landau theory of quasiparticles

(a) The fractional quantum Hall effect: the ground state is 
described by LaughlinÕs wavefunction, and the 
excitations are quasiparticles which carry fractional 
charge.

(b) The pseudogap metal: proposed to have electron-like 
quasiparticles but on a ÒsmallÓ Fermi surface which 
does not obey the Luttinger theorem.



Quantum matter without quasiparticles:

1. Ground states disconnected from independent
electron states: many-particle entanglement

2. Quasiparticle structure of excited states2. No quasiparticles

Strange metals:

Such metals are found, most prominently, near optimal 
doping in the the cuprate high temperature superconductors.

But how can we be sure that no quasiparticles exist in a 
given system? Perhaps there are some exotic quasiparticles 

inaccessible to current experimentsÉÉ..



S. Sachdev, Quantum Phase Transitions, Cambridge (1999)

Local thermal equilibration or
phase coherence time, ! ! :

¥ There is an lower boundon ! ! in all many-body quantum
systems of order! / (kB T),

! ! > C
!

kB T
,

and the lower bound is realized by systems
without quasiparticles.

¥ In systemswith quasiparticles, ! ! is parametrically larger
at low T;
e.g. in Fermi liquids ! ! ! 1/T 2,
and in gapped insulators ! ! ! e! / (kB T ) where ! is the
energy gap.



A. I. Larkin and Y. N. Ovchinnikov, JETP 28, 6 (1969)

J. Maldacena, S. H. Shenker and D. Stanford, arXiv:1503.01409 

A bound on quantum chaos:

¥ The time over which a many-body quantum
system becomes ÒchaoticÓ is given by⌧L =
1/ �L , where�L is the ÒLyapunov exponentÓ
determining memory of initial conditions. This
Lyapunov time obeys the rigorous lower bound

⌧L !
1

2⇡
!

kB T



Quantum matter without quasiparticles
! fastest possible many-body quantum chaos
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¥ Black holes have a Òring-downÓ time,⌧r , in which they radiate
energy, and stabilize to a ÔfeaturelessÕ spherical object. This time
can be computed in EinsteinÕs general relativity theory.

¥ For this black hole ⌧r = 7 .7 milliseconds. (Radius of black hole
= 183 km; Mass of black hole = 62 solar masses.)
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¥ ÔFeaturelessÕ black holes have a Bekenstein-Hawking
entropy, and a Hawking temperature, TH .
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¥ Expressed in terms of the Hawking temperature,
the ring-down time is ! r ! ~/ (kB TH ) !

¥ For this black hole TH " 1 nK.



Figure credit: L. BalentsThe Sachdev-Ye-Kitaev
(SYK) model:

¥ A theory of a
strange metal

¥ Has a dual
representation
as a black hole

¥ Fastest possible
quantum chaos

with ! L =
!

2" kB T
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Fermions occupying the eigenstates of a 
N x N random matrix

tij are independent random variables witht ij = 0 and |t ij |2 = t2

InÞnite-range model with quasiparticles



Feynman graph expansion in t ij.. , and graph-by-graph average,
yields exact equations in the largeN limit:

G(i ! ) =
1

i ! + µ ! ! (i ! )
, ! (" ) = t2G(" )

G(" = 0 ! ) = Q.

G(! ) can be determined by solving a quadratic equation.

!

! Im G(! )

µ

InÞnite-range model with quasiparticles



InÞnite-range model with quasiparticles

Fermi liquid state: Two-body interactions lead to a scattering time
of quasiparticle excitations from in (random) single-particle eigen-
states which diverges as! T ! 2 at the Fermi level.

Now add weak interactions

H =
1

(N )1/ 2

N!

i,j =1

t ij c 
i cj +

1
(2N )3/ 2

N!

i,j,k, ! =1

Jij ;k ! c 
i c 

j ck c!

Jij ;k ! are independent random variables withJij ;k ! = 0 and |Jij ;k ! |2 = J 2. We
compute the lifetime of a quasiparticle, ! " , in an exact eigenstate" " (i ) of the
free particle Hamitonian with energy E" . By FermiÕs Golden rule, forE" at the
Fermi energy

1
! "

= #J 2$3
0

"
dE# dE$ dE%f (E# )(1 ! f (E$ ))(1 ! f (E%))%(E" + E# ! E$ ! E%)

=
#3J 2$3

0

4
T2

where $0 is the density of states at the Fermi energy.
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A. Kitaev, unpublished; S. Sachdev, PRX 5, 041025 (2015)

SYK model

S. Sachdev and J. Ye, Phys. Rev. Lett. 70, 3339 (1993)

A fermion can move only
by entangling with another
fermion: the Hamiltonian
has Ònothing but
entanglementÓ.

To obtain a non-Fermi liquid, we set t ij = 0:

HSYK =
1

(2N )3/ 2

N!

i,j,k, ! =1

Jij ;k ! c 
i c 

j ck c! ! µ
!

i

c 
i ci

Q =
1
N

!

i

c 
i ci

HSYK is similar, and has identical properties, to the SY model.



S. Sachdev and J. Ye, Phys. Rev. Lett. 70, 3339 (1993)

Feynman graph expansion inJij.. , and graph-by-graph average,
yields exact equations in the largeN limit:

G(i ! ) =
1

i ! + µ ! ! (i ! )
, ! (" ) = ! J 2G2(" )G(! " )

G(" = 0 ! ) = Q.

Low frequency analysis shows that the solutions must be gapless
and obey

! (z) = µ !
1
A

"
z + . . . , G(z) =

A
"

z

for some complexA. The ground state is a non-Fermi liquid, with
a continuously variable density Q.

SYK model

! =
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¥ T = 0 GreenÕs functionG ! 1/
"

!

¥ T > 0 GreenÕs function implies conformal invariance
G ! 1/ (sin(" T! )) 1/2

¥ Non-zero entropy asT # 0, S(T # 0) = NS0 + . . .

¥ These features indicate that the SYK model is dual to
the low energy limit of a quantum gravity theory of black
holes with AdS2 near-horizon geometry. The Bekenstein-
Hawking entropy is NS0.

¥ The dependence ofS0 on the density Q matches the be-
havior of the Wald-Bekenstein-Hawking entropy of AdS2

horizons in a large class of gravity theories.

S. Sachdev and J. Ye, Phys. Rev. Lett. 70, 3339 (1993)
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A. Georges and O. Parcollet PRB 59, 5341 (1999)

SYK model



¥ T = 0 GreenÕs functionG ! 1/
"

!

¥ T > 0 GreenÕs function implies conformal invariance
G ! 1/ (sin(" T! )) 1/2

¥ Non-zero entropy asT # 0, S(T # 0) = NS0 + . . .

¥ These features indicate that the SYK model is dual to
the low energy limit of a quantum gravity theory of black
holes with AdS2 near-horizon geometry. The Bekenstein-
Hawking entropy is NS0.

¥ The dependence ofS0 on the density Q matches the be-
havior of the Wald-Bekenstein-Hawking entropy of AdS2

horizons in a large class of gravity theories.

A. Georges, O. Parcollet, and S. Sachdev, Phys. Rev. B 63, 134406 (2001)
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SYK model
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Holographic Metals and the Fractionalized Fermi Liquid
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We show that there is a close correspondence between the physical properties of holographic metals
near charged black holes in antiÐde Sitter (AdS) space, and the fractionalized Fermi liquid phase of the
lattice Anderson model. The latter phase has a ÔÔsmallÕÕ Fermi surface of conduction electrons, along with
a spin liquid of local moments. This correspondence implies that certain mean-Þeld gapless spin liquids
are states of matter at nonzero density realizing the near-horizon,AdS2 ! R2 physics of Reissner-
Nordstro¬m black holes.

DOI: 10.1103/PhysRevLett.105.151602 PACS numbers: 11.25.Tq, 75.10.Kt, 75.30.Mb

There has been a ßurry of recent activity [1Ð10] on the
holographic description of metallic states of nonzero den-
sity quantum matter. The strategy is to begin with a
strongly interacting conformal Þeld theory (CFT) in the
ultraviolet (UV), which has a dual description as the
boundary of a theory of gravity in antiÐde Sitter (AdS)
space. This CFT is then perturbed by a chemical potential
(! ) conjugate to a globally conserved charge, and the
infrared (IR) physics is given a holographic description
by the gravity theory. For large temperaturesT " ! , such
an approach is under good control, and has produced a
useful hydrodynamic description of the physics of quan-
tum criticality [11]. Much less is understood about the low
temperature limitT # ! : a direct solution of the classical
gravity theory yields boundary correlation functions de-
scribing a non-Fermi liquid metal [4], but the physical
interpretation of this state has remained obscure. It has a
nonzero entropy density asT ! 0, and this raises concerns
about its ultimate stability.

This Letter will show that there is a close parallel
between the above theories of holographic metals, and a
class of mean-Þeld theories of the ÔÔfractionalized Fermi
liquidÕÕ (FFL) phase of the lattice Anderson model.

The Anderson model (speciÞed below) has been a popu-
lar description of intermetallic transition metal or rare-
earth compounds: it describes itinerant conduction elec-
trons interacting with localized resonant states represent-
ing d (or f ) orbitals. The FFL is an exotic phase of the
Anderson model, demonstrated to be generically stable in
Refs. [12,13]; it has a ÔÔsmallÕÕ Fermi surface whose vol-
ume is determined by the density of conduction electrons
alone, while thed electrons form a fractionalized spin
liquid state. The FFL was also found in a large spatial
dimension mean-Þeld theory by Burdinet al. [14], and is
the ground state needed for a true ÔÔorbital-selective Mott
transitionÕÕ [15]. The FFL should be contrasted from the
conventional Fermi liquid (FL) phase, in which there is a
ÔÔlargeÕÕ Fermi surface whose volume counts both the con-
duction andd electrons: the FL phase is the accepted de-
scription of many ÔÔheavy fermionÕÕ rare-earth intermetal-

lics. However, recent experiments onYbRh2$Si0:95Ge0:05%2
have observed an unusual phase for which the FFL is an
attractive candidate [16].

Here, we will describe the spin liquid of the FFL by the
gapless mean-Þeld state of Sachdev and Ye [17] (SY). We
will then Þnd that physical properties of the FFL are
essentially identical to those of the present theories of
holographic metals. Similar comments apply to other gap-
less quantum liquids [18] which are related to the SY state.
This agreement implies that nonzero density matter de-
scribed by the SY (or a related) state is a realization of the
near-horizon,AdS2 ! R2 physics of Reissner-Nordstro¬m
black holes.

We begin with a review of key features of the present
theory of holographic metals. The UV physics is holo-
graphically described by a Reissner-Nordstro¬m black
hole inAdS4. In the IR, the low-energy physics is captured
by the near-horizon region of the black hole, which has a
AdS2 ! R2 geometry [4]. The UV theory can be written as
a SU$Nc%gauge theory, but we will only use gauge-
invariant operators to describe the IR physics. We use a
suggestive condensed matter notation to represent the IR,
anticipating the correspondence we make later. We probe
this physics by a ÔÔconduction electronÕÕck " (wherek is a
momentum and" & " , #a spin index), which will turn out
to have a Fermi surface at a momentumk ' jk j & kF. The
IR physics of this conduction electron is described by the
effective Hamiltonian [4,7]

H & H0 ( H1)d; c* ( HAdS (1)

H0 &
X

"

Z d2k
4# 2 $" k + ! %cy

k " ck " ; (2)

with ck " canonical fermions and" k their dispersion, and

H1)d; c* &
X

"

Z d2k
4# 2 )Vk dy

k " ck " ( V,
k cy

k " dk " *; (3)

with Vk a ÔÔhybridizationÕÕ matrix element. Thedk " are
nontrivial operators controlled by the strongly coupled IR
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SYK and AdS2

! !x
! = !

charge
density Q

T2

AdS2 ! T2

ds2 = ( d! 2 " dt2)/ ! 2 + d"x2

Gauge Þeld:A = ( E/ ! )dt

Einstein-Maxwell theory
+ cosmological constant



A. Georges and O. Parcollet
PRB 59, 5341 (1999) 

A. Kitaev, unpublished
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After integrating the fermions, the partition function can be writ-
ten as a path integral with an action S analogous to a Luttinger-
Ward functional

Z =
!

DG(! 1, ! 2)D! (! 1, ! 2) exp(! NS)

S = ln det [ " (! 1 ! ! 2)(#! 1 + µ) ! ! (! 1, ! 2)]

+
!

d! 1d! 2! (! 1, ! 2)
"
G(! 2, ! 1) + ( J 2/ 2)G2(! 2, ! 1)G2(! 1, ! 2)

#

At frequencies " J , the time derivative in the determinant is less
important, and without it the path integral is invariant under the
reparametrization and gauge transformations

! = f ($)

G(! 1, ! 2) = [ f !($1)f !($2)]" 1/ 4 g($1)
g($2)

G($1, $2)

! (! 1, ! 2) = [ f !($1)f !($2)]" 3/ 4 g($1)
g($2)

! ($1, $2)

where f ($) and g($) are arbitrary functions.

A. Georges, O. Parcollet, and S. Sachdev, 
Phys. Rev. B 63, 134406 (2001)

SYK model
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Let us write the large N saddle point solutions ofS as

Gs(! 1 ! ! 2) " (! 1 ! ! 2)! 1/ 2 , ! s(! 1 ! ! 2) " (! 1 ! ! 2)! 3/ 2.

These are not invariant under the reparametrization symmetry but are in-
variant only under a SL(2,R) subgroup under which

f (! ) =
a! + b
c! + d

, ad ! bc= 1 .

So the (approximate) reparametrization symmetry is spontaneously broken.

Reparametrization zero mode
Expand about the saddle point by writing

G(! 1, ! 2) = [ f "(! 1)f "(! 2)]1/ 4Gs(f (! 1) ! f (! 2))

(and similarly for ! ) and obtain an e" ective action for f (! ). This action
does not vanish because of the time derivative in the determinant which is
not reparameterization invariant.

SYK model

J. Maldacena and D. Stanford, arXiv:1604.07818
See also  A. Kitaev, unpublished, and  J. Polchinski and  V. Rosenhaus, arXiv:1601.06768
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Connections of SYK to gravity and AdS2

horizons

¥ Reparameterization and gauge
invariance are the ÔsymmetriesÕ of
the Einstein-Maxwell theory of
gravity and electromagnetism

¥ SL(2,R) is the isometry group of AdS2.
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SYK model

Wenbo Fu, Yingfei Gu, S. Sachdev, unpublished

The couplings are given by thermodynamics (! is the grand potential)

K = !
!

! 2!
! µ2

"

T
, " + 4#2E2K = !

!
! 2!
! T2

"

µ

2#E =
! S0

! Q

With g(! ) = e! i ! ( " ) , the action for " (! ) and f (! ) =
1

#T
tan(#T(! + $(! ))

ßuctuations is

S! ,f =
K
2

! 1/T

0
d! (%" " + i (2#ET)%" $)2 !

&
4#2

! 1/T

0
d! { f, ! } ,

where { f, ! } is the Schwarzian:

{ f, ! } "
f """

f " !
3
2

"
f ""

f "

# 2

.



SYK and AdS2

¥ The same e! ective action is obtained from the Reissner-N¬ordstrom-
AdS black hole of Einstein-Maxwell theory in 4 dimensions, after a
dimensional direction to AdS2 ! T2, valid when the temperature is
smaller than a scale set by the size ofT2.

¥ The Lyapunov time to quantum chaos saturates the lower bound both
in the SYK model and in the gravity theory.

! L =
1

2"
!

kB T
A. Kitaev, KITP talk, 2015

J. Maldacena and D. Stanford, arXiv:1604.07818
Wenbo Fu, Yingfei Gu, S. Sachdev, unpublished

With g(! ) = e! i ! ( " ) , the action for " (! ) and f (! ) =
1

#T
tan(#T(! + $(! ))

ßuctuations is

S! ,f =
K
2

! 1/T

0
d! (%" " + i (2#ET)%" $)2 !

&
4#2

! 1/T

0
d! { f, ! } ,

where { f, ! } is the Schwarzian:

{ f, ! } "
f """

f " !
3
2

"
f ""

f "

# 2

.



Entangled quantum matter without quasiparticles

¥ Is there a connection between
strange metals and black holes?
Yes, e.g. the SYK model.

¥ Why do they have the same
equilibration time ! ! / (kB T)?
Strange metals donÕt have
quasiparticles and thermalize rapidly;
Black holes are Òfast scramblersÓ.

¥ Theoretical predictions for strange metal
transport in graphene agree well with experiments


