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Conventiongbantum matter:
1. Ground state®nnecteddiabatically to

Independent electron states
2.Boltzmann-Landau theory of quasiparti

Metals

LuttingerOs theorem:
volume enclosed by
Er the Fermi surface =
E density of all electrong
0 (mod 2 per unit cell).

Obeyed in overdoped
cuprates




Topologicaluantum matter:

1. Ground statessconnectdtbm independe

electron states: many-particle entanglem
2. Boltzmann-Landau theory of quasiparti

(a) The fractional quantum Hall effect: the ground state Is
described by LaughlinOs wavefunction, and the
excitations arequasiparticlaghich carry fractional
charge.

(b) The pseudogap metal: proposed to have electron-like
guasiparticles but on a OsmallO Fermi surface which
does not obey the Luttinger theorem.



Quantum matter without guasiparticles
1. Ground statessconnectdtbm independe

electron states: many-particle entanglem
2. No guasiparticles state

Strange metais

Such metals are found, most prominently, near optimal
doping in the the cuprate high temperature superconduct

But how can we be sure that no quasiparticles exist in-
given system? Perhaps there are some exotic quasiparti
inaccessible to current experimentskEE..



Local thermal equilibration or
phase coherence time, !,

¥ There Is anlower boundon !, In all many-body quantum
systems of order! / (kg T),

|
I >C.—,
| kg T

and the lower bound is realized by systems
without quasiparticles.

¥ In systemswith quasiparticles,!, Is parametrically larger

at low T;

e.g. in Fermi liquids !, | 1T 2,

and in gapped insulators!, ! € /(e T) where! is the
energy gap.

S. Sachdevuantum Phase Transition€ambridge (1999)



A bound on quantum chaos:

¥ The time over which a many-body quantum
system becomes OchaoticO is given by =
1/ \. , where \_ is the OLyapunov exponentO
determining memory of initial conditions. This
Lyapunov time obeys the rigorous lower boun

1 !
27Tk|3T

7'|_!

A. l. Larkin andY. N. Ovchinnikov, JEA® 6 (1969)
J. Maldacena, S. H. Shenker and D. Stanford, arXiv:1503.0
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Quantum matter without quasiparticles
I fastest possible many-body quantum chac

T
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¥ Black holes have a Oring-downO timeg, , In which they radiate
energy, and stabilize to a OfeaturelessO spherical object. This |
can be computed in EinsteinOs general relativity theory.

¥ For this black hole T, = 7.7 milliseconds. (Radius of black hol
= 183 km; Mass of black hole = 62 solar masses.)
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¥ OFeaturelessO black holes have a Bekenstein-Haw
entropy, and a Hawking temperature, Ty .
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the Hawking temperature
I h/ (kg TH ) !

1 nK.



The SaChdeV-Ye-Kltae\ Figure credit: L. Balents
(SYK) model:

¥ A theory of a
strange metal

¥ Has a dual
representation
as a black hole

¥ Fastest possible

guantum chaos
|

2" kg T

with I =



InPnite-range model with quasiparticles

(N
j =1
CiCj+CjCi:O| : CiCj+CjCi:!ij
1.
N cc =0

tj are independent random variables withtj =0 and |t |2 = t°

Fermions occupying the eigenstates of a
N X N random matrix



InPnite-range model with quasiparticles

Feynman graph expansion int;_ , and graph-by-graph average
yields exact equations in the largeN limit:

1 .y .
TSN (") = £°6(")

G("=0')= Q

G(! ) can be determined by solving a quadratic equation.

G(i! ) =

A

I 1Im G(!)




InPnite-range model with quasiparticles
Now add weak Interactions

IN IN

3 1
- 1/ 2
(N) =

1
(2N)3/2

H i g +

1

Jmmqqqq
ijk, !=1

Jij .k are independent random variables withJ; .x1 = 0 and [Jj 1| = JZ2. We
compute the lifetime of a quasiparticle,!-, in an exact eigenstate" - (i) of the

free particle Hamitonian with energy E- . By FermiOs Golden rule, foE- at the
Fermi energy

1

= #3785 dE4dESdEsf (Ex)(1! f(Es)(1! f(ER)UAE- + Ex! Es! Eo
_#I8
= 1 T

where $; is the density of states at the Fermi energy.

Fermi liquid state: Two-body Interactions lead to a scattering time
of quasiparticle excitations from in (random) single-particle eigen
states which diverges ad T’ 2 at the Fermi level.




SYK model

To obtain a non-Fermi liquid, we set tj; = 0:

1 IN |
Hsyk = 35 Jij ki GGCG! B GG
(2N) Lk, 1=1 i
1 !
Q= N C C

Hsvk IS similar, and has identical properties, to the SY mode

°° A fermion can move only
J4,56,11 ce by er_ltangling With_ anqther
fermion: the Hamiltonian
has Onothing but
entanglementO.

Jg 912 14
® 14

S. Sachdev and J.Ye, Phys. Rev./1028339 (1993
A. Kitaev, unpublished; S. Sachdev, BR)41025 (2015



SYK model

-eynman graph expansion inJj_, and graph-by-graph average
yields exact equations in the largeN limit:

1
i+l (i)
G("=0')= Q.

G(i! ) =

(")= 1 IGA()G(! )

S. Sachdev and J.Ye, Phys. Rev.A028339 (1993



SYK model

-eynman graph expansion inJj_, and graph-by-graph average
yields exact equations in the largeN limit:

1
i+l (i)
G("=0')= Q.

Low frequency analysis shows that the solutions must be gaple
and obey

(")= 1 IGA()G(! )

G(i! ) =

1 (z) = p! %"Z+... , G(2) = %

for some complexA. The ground state Is a non-Fermi liquid, with
a continuously variable density Q.

S. Sachdev and J.Ye, Phys. Rev.A028339 (1993



SYK model

¥ T =0 GreenOs functiorG! 1/ T
S. Sachdev and J.Ye, Phys. Rev.A028339 (1993)




SYK model

¥ T =0 GreenOs functiorG! 1/ T

¥ T > 0 GreenOs function implies conformal invariance
G! 1(sin("T!)) 1/2 A. Georges and O. Parcollet PFB, 5341 (1999)



SYK model

¥ T =0 GreenOs functiorG! 1/ T

¥ T > 0 GreenOs function implies conformal invariance
G! 1 (sin("T!))?1/?

¥ Non-zero entropy asT # O, S(T # 0)= NSp+ ...
A. Georges, O. Parcollet, and S. Sachdev, Phys. R8y184406 (2001)



SYK model

¥ T =0 GreenOs functiorG! 1/ T

¥ T > 0 GreenOs function implies conformal invariance
G! 1 (sin("T!))?1/?

¥ Non-zero entropy asT # O, S(T# 0)= NSp+ ...

¥ These features indicate that the SYK model is dual fc
the low energy limit of a quantum gravity theory of black
holes with AdS, near-horizon geometry. The Bekensteir
Hawking entropy is N Sy. S. Sachdev, PRD5, 151602 (2010)

¥ The dependence ofSy; on the density Q matches the be
havior of the Wald-Bekenstein-Hawking entropy of AdS,
horizons In a large class of gravity theories.

S. Sachdev, PR5{041025 (2015)



Einstein-Maxwell theory

+ cosmological constant
charge | T2

AdS, | T2 density Q
2 -

ds? = (d!2" dt?)/12+ dx?
Gauge beld:A = (E/!)dt

SYK and AdS

x—

) PHYSICAL REVIEW LETTERS 105151602 (2010)

S

Holographic Metals and the Fractionalized Fermi Liquid

Subir Sachdev

Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
(Received 23 June 2010; published 4 October 2010)

We show that there is a close correspondence between the physical properties of holographi
near charged black holes in antibde Sitter (AdS) space, and the fractionalized Fermi liquid phas
lattice Anderson model. The latter phase has a OOsmallOO Fermi surface of conduction electrons
a spin liquid of local moments. This correspondence implies that certain mean-bPeld gapless spil
are states of matter at nonzero density realizing the near-horikd8,! R? physics of Reissne
Nordstran black holes.



SYK model

After integrating the fermions, the partition function can be writ-
ten as a path integral with an action S analogous to a Luttinger-

Ward functional
!

7 = DG(! 1, ! 2)D! (! 1, ! 2) exp(! N S) A. Georges, O. Parcollet, and S. Sachi

Phys. Rev. B3, 134406 (2001
S=Indet["(11! 1)(#, + ! ! (11,!2)]

#
+ didin! (g,12) Gl ') +(39/2)G(12,11)GA(M 1,1 2)



SYK model

After integrating the fermions, the partition function can be writ-

ten as a path integral with an action S analogous to a Luttinger-

Ward functional
!

7 = DG(! 1, ! 2)D! (! 1, ! 2) exp(! N S) A. Georges, O. Parcollet, and S. Sachi
Phys. Rev. B3, 134406 (2001
S=Indet["('a! L), + M) ! ! (11,!2)]

! #
+ didin! (g,12) Gl ') +(39/2)G(12,11)GA(M 1,1 2)

At frequencies"” J, the time derivative In the determinant Is less
Important, and without it the path integral is invariant under the

reparametrization and gauge transformations A Georges and O, Parcolle
PRB59, 5341 (1999)
I = 1 (9) A. Kitaev, unpublishec
S. Sachdev, PR5{ 041025 (2015)

*1/4 9($1)

G(1,12) =[f($1)f ($2)] o($,) G(%$1,%))
(1, 12) = [FS0f (8] ¥ ggg | ($1,$)

wheref ($) and g($) are arbitrary functions.



SYK model

Let us write the large N saddle point solutions ofS as

Gs(11! )" (Mg! 1) M2 gl 1) (1! 1)t e

These are not invariant under the reparametrization symmetry but are in-
variant only under a SL(2,R) subgroup under which

al + b

I —
a+d ad! bc=1.

f(1)=

So the (approximate) reparametrization symmetry is spontaneously broker

J. Maldacena and D. Stanford, arXiv:1604.0°
See also A. Kitaev, unpublished, and J. Polchinski and V. Rosenhaus, arXiv:16



SYK model

Let us write the large N saddle point solutions ofS as

1h{ Connections of SYK to gravity and AdSZx-

FGJM P9 TR A PRI W B ¢ R 3 WA P I ) s
val  horizons

Sol

¥ Reparameterization and gauge
invariance are the OsymmetriesO ¢
the Einstein-Maxwell theory of
gravity and electromagnetism

IN-

Ker

k ¥ SL(2,R) is the isometry group of AdSy

J. Maldacena and D. Stanford, arXiv:1604.0°
See also A. Kitaev, unpublished, and J. Polchinski and V. Rosenhaus, arXiv:16



SYK model

Let us write the large N saddle point solutions ofS as

Gs(11! )" (Mg! 1) M2 gl 1) (1! 1)t e

These are not invariant under the reparametrization symmetry but are in-
variant only under a SL(2,R) subgroup under which

al + b
cl +d

f(1)= . ad! bc=1.

So the (approximate) reparametrization symmetry is spontaneously broker

Reparametrization zero mode
Expand about the saddle point by writing

G('1,'2) =[F (P )f ()M Gs(f(11) ! T(12))

(and similarly for ! ) and obtain an €"ective action for f (! ). This action
does not vanish because of the time derivative in the determinant which |
not reparameterization invariant.

J. Maldacena and D. Stanford, arXiv:1604.0°
See also A. Kitaev, unpublished, and J. Polchinski and V. Rosenhaus, arXiv:16



SYK model| .
With g(!)= e " () the action for " (1) and f (! ) = ﬁtan(#T(! + §1))
[Suctuations Is

K! T & b
) d (%" + i(2#HET)% $)? !

S ¢ = — d {f, 1},
f 0 a2

where {f, !} Is the Schwarzian:

The couplings are given by thermodynamics ( Is the grand potential)
I " I 11
K =1 L A#°E’K = | L
— . S , 1] + — . S
NV | T2 '

Wenbo Fu,Yingfei Gu, S. Sachdev, unpubli



SYK and AdS .
With g(!) = € " (") the action for " (! ) and f (1) = ﬁtan(#T(! + K1)
[Ructuations is

K! /T & | /T
) d (%" + i(2#ET)% 9> ! — d {f, !},

S =
0 4#2

where {f, !} Is the Schwarzian:

f 3 f
" 1 - __
(1" =3 o
¥ The same ¢ ective action Is obtained from the Reissner-Noerdstromn
AdS Dblack hole of Einstein-Maxwell theory in 4 dimensions, after
dimensional direction to AdS, ! T2, valid when the temperature is

smaller than a scale set by the size of 2.

¥ The Lyapunov time to quantum chaos saturates the lower bound botl
In the SYK model and in the gravity theory.

o 1 A. Kitaev, KITP talk, 201
N " ka T J. Maldacena and D. Stanford, arXiv:1604.0"
B Wenbo Fu,Yingfei Gu, S. Sachdev, unpubli




Entangled quantum matter without quasiparti

¥ |s there a connection between
strange metals and black holes?
Yes, e.g. the SYK model.

¥ Why do they have the same
equilibration time ! 1/ (kg T)?
Strange metals donOt have
guasiparticles and thermalize rapidly;
Black holes are Ofast scramblersO.

¥ Theoretical predictions for strange metal
transport in graphene agree well with experiment



