Approximations of the Neumann Laplacian in nonuniformly collapsing strips

César R. de Oliveira

UFSCar

QMath13 – Atlanta
1 Sources

2 Collapsing regions

3 Effective operator

4 Uniformly collapsing approximations

5 Examples

1 Sources

2 Collapsing regions

3 Effective operator

4 Uniformly collapsing approximations

5 Examples
Initial

\[g(x) \]

- \[\Delta \]

\[\Lambda_1 \]

\[a \]
Collapsing regions

Initial

\[\varepsilon g(x) \text{ nonuniformly collapsing} \]

\[-\Delta \]

\[\Lambda_{\varepsilon} \]

a
We consider “thick regions” given by functions $g : [a, \infty) \to (0, \infty)$ with $g(x) \to \infty$ as $x \to \infty$. Is there an effective operator $S = S(g)$ as $\varepsilon \to 0$?

A more delicate question: Is there a family of uniformly collapsing regions Q_ε whose effective operator coincides with S?

Conditions on g:

(c1) C^2 function and strictly increasing for large values of x;

(c2) $j(x) := \frac{g'(x)}{2g(x)}$ and $j'(x)$ are bounded.
We consider “thick regions” given by functions $g : [a, \infty) \to (0, \infty)$ with $g(x) \to \infty$ as $x \to \infty$. Is there an effective operator $S = S(g)$ as $\varepsilon \to 0$?

A more delicate question: Is there a family of uniformly collapsing regions Q_ε whose effective operator coincides with S?

Conditions on g:
(c1) C^2 function and strictly increasing for large values of x;
(c2) $j(x) := \frac{g'(x)}{2g(x)}$ and $j'(x)$ are bounded.
• We consider “thick regions” given by functions $g : [a, \infty) \to (0, \infty)$ with $g(x) \to \infty$ as $x \to \infty$. Is there an effective operator $S = S(g)$ as $\varepsilon \to 0$?

• A more delicate question: Is there a family of uniformly collapsing regions Q_{ε} whose effective operator coincides with S?

••• Conditions on g:

c1) C^2 function and strictly increasing for large values of x;

c2) $j(x) := \frac{g'(x)}{2g(x)}$ and $j'(x)$ are bounded.
• We consider “thick regions” given by functions $g : [a, \infty) \rightarrow (0, \infty)$ with $g(x) \rightarrow \infty$ as $x \rightarrow \infty$. Is there an effective operator $S = S(g)$ as $\varepsilon \rightarrow 0$?

● A more delicate question: Is there a family of uniformly collapsing regions Q_ε whose effective operator coincides with S?

●●● Conditions on g:
(c1) C^2 function and strictly increasing for large values of x;

(c2) $j(x) := \frac{g'(x)}{2g(x)}$ and $j'(x)$ are bounded.
(Un)Bounded region

• We consider “thick regions” given by functions $g : [a, \infty) \to (0, \infty)$ with $g(x) \to \infty$ as $x \to \infty$. Is there an effective operator $S = S(g)$ as $\varepsilon \to 0$?

•• A more delicate question: Is there a family of uniformly collapsing regions Q_ε whose effective operator coincides with S?

••• Conditions on g:
(c1) C^2 function and strictly increasing for large values of x;

(c2) $j(x) := \frac{g'(x)}{2g(x)}$ and $j'(x)$ are bounded.
(Un)Bounded region

The region of interest is

$$\Lambda_\varepsilon := \{(x, y) \in \mathbb{R}^2 | 0 < y < \varepsilon g(x), \ x \in [a, \infty)\},$$

and the quadratic form (Neumann Laplacian)

$$m_\varepsilon(v) = \int_{\Lambda_\varepsilon} |\nabla v|^2 dx, \ \text{dom } m_\varepsilon = H^1(\Lambda_\varepsilon).$$

After changes of variables, $m_\varepsilon(v)$ is cast as

$$n_\varepsilon(\varphi) := \int_\mathcal{Q} \left(\left| \varphi' - \frac{g'}{2g} \varphi - y \varphi_y \frac{g'}{g} \right|^2 + \frac{\varphi_y^2}{\varepsilon^2 g^2} \right) dxdy,$$

where $\mathcal{Q} := [a, \infty) \times (0, 1)$ is a fixed region. Note that, as $\varepsilon \to 0$,

$$n_\varepsilon(\varphi) \longrightarrow n(\varphi) := \begin{cases} \int_\mathcal{Q} \left| \varphi' - \frac{g'}{2g} \varphi \right|^2 dxdy, & \text{if } \varphi_y = 0, \\ \infty, & \text{if } \varphi_y \neq 0. \end{cases}$$

Let S_ε and S be the operators associated with n_ε and n, respectively.
The region of interest is

\[\Lambda_\varepsilon := \{ (x, y) \in \mathbb{R}^2 \mid 0 < y < \varepsilon g(x), \ x \in [a, \infty) \} , \]

and the quadratic form (Neumann Laplacian)

\[m_\varepsilon(v) = \int_{\Lambda_\varepsilon} |\nabla v|^2 \, dx, \quad \text{dom } m_\varepsilon = H^1(\Lambda_\varepsilon). \]

After changes of variables, \(m_\varepsilon(v) \) is cast as

\[n_\varepsilon(\varphi) := \int_Q \left(\left| \varphi' - \frac{g'}{2g} \varphi - y \varphi y \frac{g'}{g} \right|^2 + \left| \varphi_y \right|^2 \right) \, dx \, dy, \]

where \(Q := [a, \infty) \times (0, 1) \) is a fixed region. Note that, as \(\varepsilon \to 0 \),

\[n_\varepsilon(\varphi) \longrightarrow n(\varphi) := \begin{cases} \int_Q \left| \varphi' - \frac{g'}{2g} \varphi \right|^2 \, dx \, dy, & \text{if } \varphi_y = 0, \\ \infty, & \text{if } \varphi_y \neq 0. \end{cases} \]

Let \(S_\varepsilon \) and \(S \) be the operators associated with \(n_\varepsilon \) and \(n \), respectively.
(Un)Bounded region

The region of interest is

$$\Lambda_\varepsilon := \{(x, y) \in \mathbb{R}^2 | 0 < y < \varepsilon g(x), \; x \in [a, \infty)\},$$

and the quadratic form (Neumann Laplacian)

$$m_\varepsilon(v) = \int_{\Lambda_\varepsilon} |\nabla v|^2 \, dx, \quad \text{dom} \, m_\varepsilon = H^1(\Lambda_\varepsilon).$$

After changes of variables, $m_\varepsilon(v)$ is cast as

$$n_\varepsilon(\varphi) := \int_Q \left(\left| \varphi' - \frac{g'}{2g} \varphi - y \varphi_y \frac{g'}{g} \right|^2 + \frac{\left| \varphi_y \right|^2}{\varepsilon^2 g^2} \right) \, dx \, dy,$$

where $Q := [a, \infty) \times (0, 1)$ is a fixed region. Note that, as $\varepsilon \to 0$,

$$n_\varepsilon(\varphi) \quad \longrightarrow \quad n(\varphi) := \begin{cases} \int_Q \left| \varphi' - \frac{g'}{2g} \varphi \right|^2 \, dx \, dy, & \text{if} \; \varphi_y = 0, \\ \infty, & \text{if} \; \varphi_y \neq 0. \end{cases}$$

Let S_ε and S be the operators associated with n_ε and n, respectively.
The region of interest is

$$\Lambda_\varepsilon := \{(x, y) \in \mathbb{R}^2 \mid 0 < y < \varepsilon g(x), \ x \in [a, \infty)\},$$

and the quadratic form (Neumann Laplacian)

$$m_\varepsilon(v) = \int_{\Lambda_\varepsilon} |\nabla v|^2 \, dx, \quad \text{dom } m_\varepsilon = H^1(\Lambda_\varepsilon).$$

After changes of variables, $m_\varepsilon(v)$ is cast as

$$n_\varepsilon(\varphi) := \int_Q \left(\left| \varphi' - \frac{g'}{2g} \varphi - y \varphi_y \frac{g'}{g} \right|^2 + \frac{|\varphi_y|^2}{\varepsilon^2 g^2} \right) \, dx \, dy,$$

where $Q := [a, \infty) \times (0, 1)$ is a fixed region. Note that, as $\varepsilon \to 0$,

$$n_\varepsilon(\varphi) \longrightarrow n(\varphi) := \begin{cases} \int_Q \left| \varphi' - \frac{g'}{2g} \varphi \right|^2 \, dx \, dy, & \text{if } \varphi_y = 0, \\ \infty, & \text{if } \varphi_y \neq 0. \end{cases}$$

Let S_ε and S be the operators associated with n_ε and n, respectively.
(Un)Bounded region

Let $\mathcal{L} := \{ \varphi(x, y) = w(x)1 | w \in L^2([a, \infty)) \}$.

Theorem (1) (by Kato-Robinson Theorem)

For all $f \in L^2(Q)$ one has, as $\varepsilon \to 0$,

$$\| S^{-1}_\varepsilon f - (S^{-1} \oplus 0) f \| \to 0,$$

where 0 is the null operator on \mathcal{L}^\perp.
Let $\mathcal{L} := \{ \varphi(x,y) = w(x)1 \mid w \in L^2([a,\infty)) \}$.

Theorem (1) (by Kato-Robinson Theorem)

*For all $f \in L^2(Q)$ one has, as $\varepsilon \to 0$,

$$
\| S_{\varepsilon}^{-1} f - (S^{-1} \oplus 0) f \| \longrightarrow 0,
$$

where 0 is the null operator on \mathcal{L}^\perp.***
1 Sources

2 Collapsing regions

3 Effective operator

4 Uniformly collapsing approximations

5 Examples
(Un)Bounded region

The goal now is to characterize S: for this we need (c2), i.e., bounded $j = \frac{g'}{2g}$ and j'.

Theorem (2)

For g as above, we have

$$(Sw)(x) := -w''(x) + \varrho(x)w(x),$$

with $\varrho(x) := j^2(x) + j'(x)$ and a Robin condition at the end point a, that is,

$$\text{dom } S = \{w \in H^2([a, \infty)) \mid j(a)w(a) = w'(a)\}. $$
The goal now is to characterize S: for this we need (c2), i.e., bounded $j = \frac{g'}{2g}$ and j'.

Theorem (2)

For g as above, we have

$$(Sw)(x) := -w''(x) + \varrho(x)w(x),$$

with $\varrho(x) := j^2(x) + j'(x)$ and a Robin condition at the end point a, that is,

$$\text{dom } S = \{w \in H^2([a, \infty)) \mid j(a)w(a) = w'(a)\}.$$
The goal now is to characterize S: for this we need (c2), i.e., bounded $j = \frac{g'}{2g}$ and j'.

Theorem (2)

For g as above, we have

$$(Sw)(x) := -w''(x) + \varrho(x)w(x),$$

with $\varrho(x) := j^2(x) + j'(x)$ and a *Robin condition* at the end point a, that is,

$$\text{dom } S = \{w \in H^2([a, \infty)) \mid j(a)w(a) = w'(a)\}.$$
1 Sources

2 Collapsing regions

3 Effective operator

4 Uniformly collapsing approximations

5 Examples
Diverging region

Second main goal: finding uniformly collapsing regions Q_ε whose effective operator coincides with S.

\[
1/\varepsilon^\alpha \quad (0<\alpha<1)
\]

$\varepsilon g_\varepsilon(x)$

$\varepsilon g_\varepsilon(x)$

Q_ε
Pick bounded functions $g_\varepsilon : [a, +\infty) \to \mathbb{R}$ as in the previous figure, which converges pointwise to g with collapsing εg (nonuniformly) and $\varepsilon g_\varepsilon$ (uniformly).

Recall that Q_ε denotes the region below $\varepsilon g_\varepsilon(x)$. Consider the Neumann quadratic form

$$f_\varepsilon(\psi) = \int_{Q_\varepsilon} |\nabla \psi|^2 \, dx \, dy,$$

$$\text{dom } f_\varepsilon = H^1(Q_\varepsilon).$$

Set $Q := [a, \infty) \times (0, 1)$. After changes of variables, we pass to

$$h_\varepsilon(\psi) = \int_Q \left(\left| \psi' - \frac{g'_\varepsilon}{2g_\varepsilon} \psi - y \frac{g'_\varepsilon}{g_\varepsilon} \psi_y \right|^2 + \frac{|\psi_y|^2}{\varepsilon^2 g_\varepsilon^2} \right) \, dx \, dy,$$

$$\text{dom } h_\varepsilon = H^1(Q) \subset L^2(Q).$$

Denote by H_ε the associated operator whose behavior we are interested in understanding as $\varepsilon \to 0$.
Pick bounded functions $g_\varepsilon : [a, +\infty) \to \mathbb{R}$ as in the previous figure, which converges pointwise to g with collapsing εg (nonuniformly) and $\varepsilon g_\varepsilon$ (uniformly).

Recall that Q_ε denotes the region below $\varepsilon g_\varepsilon(x)$. Consider the Neumann quadratic form

$$f_\varepsilon(\psi) = \int_{Q_\varepsilon} |\nabla \psi|^2 \, dx \, dy, \quad \text{dom } f_\varepsilon = H^1(Q_\varepsilon).$$

Set $Q := [a, \infty) \times (0, 1)$. After changes of variables, we pass to

$$h_\varepsilon(\psi) = \int_{Q} \left(\left| \psi' - \frac{g_\varepsilon'}{2g_\varepsilon} \psi - y \frac{g_\varepsilon'}{g_\varepsilon} \psi_y \right|^2 + \frac{|\psi_y|^2}{\varepsilon^2 g_\varepsilon^2} \right) \, dx \, dy,$$

$$\text{dom } h_\varepsilon = H^1(Q) \subset L^2(Q).$$

Denote by H_ε the associated operator whose behavior we are interested in understanding as $\varepsilon \to 0$.
Pick bounded functions \(g_\varepsilon : [a, +\infty) \to \mathbb{R}\) as in the previous figure, which converges pointwise to \(g\) with collapsing \(\varepsilon g\) (nonuniformly) and \(\varepsilon g_\varepsilon\) (uniformly).

Recall that \(Q_\varepsilon\) denotes the region below \(\varepsilon g_\varepsilon(x)\). Consider the Neumann quadratic form

\[
f_\varepsilon(\psi) = \int_{Q_\varepsilon} |\nabla \psi|^2 \, dx \, dy, \quad \text{dom } f_\varepsilon = H^1(Q_\varepsilon).
\]

Set \(Q := [a, \infty) \times (0, 1)\). After changes of variables, we pass to

\[
h_\varepsilon(\psi) = \int_{Q} \left(\left| \psi' - \frac{g'_\varepsilon}{2g_\varepsilon} \psi - y \frac{g'_\varepsilon}{g_\varepsilon} \psi_y \right|^2 + \frac{|\psi_y|^2}{\varepsilon^2 g_\varepsilon^2} \right) \, dx \, dy, \quad (1)
\]

\[\text{dom } h_\varepsilon = H^1(Q) \subset L^2(Q).\] Denote by \(H_\varepsilon\) the associated operator whose behavior we are interested in understanding as \(\varepsilon \to 0\).
Uniformly collapsing approximations

Pick bounded functions $g_\varepsilon : [a, +\infty) \to \mathbb{R}$ as in the previous figure, which converges pointwise to g with collapsing εg (nonuniformly) and $\varepsilon g_\varepsilon$ (uniformly).

Recall that Q_ε denotes the region below $\varepsilon g_\varepsilon(x)$. Consider the Neumann quadratic form

$$f_\varepsilon(\psi) = \int_{Q_\varepsilon} |\nabla \psi|^2 \, dx \, dy, \quad \text{dom } f_\varepsilon = H^1(Q_\varepsilon).$$

Set $Q := [a, \infty) \times (0, 1)$. After changes of variables, we pass to

$$h_\varepsilon(\psi) = \int_Q \left(\left| \left(\frac{g_\varepsilon'}{2g_\varepsilon} \psi - y \frac{g_\varepsilon'}{g_\varepsilon} \psi_y \right|^2 + \frac{|\psi_y|^2}{\varepsilon^2 g_\varepsilon^2} \right) \, dx \, dy,$$

\text{dom } h_\varepsilon = H^1(Q) \subset L^2(Q).$ Denote by H_ε the associated operator \textbf{whose behavior we are interested in understanding as }$\varepsilon \to 0$.
• First a **reduction of dimension**. Consider again the subspace

$$
\mathcal{L} = \{ w(x) \mid w \in L^2([a, \infty)) \},
$$

the one-dimensional quadratic form

$$
t_\varepsilon(w) := h_\varepsilon(w 1) = \int_a^\infty \left| w' - \frac{g'_\varepsilon}{2g_\varepsilon} w \right|^2 dx,
\quad \text{dom } t_\varepsilon = H^1([a, \infty)),
$$

and denote by T_ε the associated operator.

Under the above conditions:

Theorem (3)(based on Friedlander & Solomyak method)

For g as above, one has

$$
\left\| H_\varepsilon^{-1} - (T_\varepsilon^{-1} \oplus 0) \right\| \to 0, \quad \varepsilon \to 0,
$$

*where 0 is the null operator on the subspace \mathcal{L}^\perp.***
Uniformly collapsing regions

- First a **reduction of dimension**. Consider again the subspace

\[\mathcal{L} = \{ w(x) \ 1 \ | \ w \in L^2([a, \infty)) \} , \]

the one-dimensional quadratic form

\[t_\varepsilon(w) := h_\varepsilon(w \ 1) = \int_a^\infty |w' - \frac{g'_\varepsilon}{2g_\varepsilon} w|^2 \, dx, \quad \text{dom } t_\varepsilon = H^1([a, \infty)), \quad (2) \]

and denote by \(T_\varepsilon \) the associated operator.

Under the above conditions:

Theorem (3)(based on Friedlander & Solomyak method)

For \(g \) as above, one has

\[\| H_\varepsilon^{-1} - (T_\varepsilon^{-1} \oplus 0) \| \to 0, \quad \varepsilon \to 0, \]

where 0 is the null operator on the subspace \(\mathcal{L}^\perp \).
Uniformly collapsing regions

- First a **reduction of dimension**. Consider again the subspace

\[
\mathcal{L} = \{ w(x) 1 | w \in L^2([a, \infty)) \},
\]

the one-dimensional quadratic form

\[
t_\varepsilon(w) := h_\varepsilon(w 1) = \int_a^\infty \left| w' - \frac{g'_\varepsilon}{2g_\varepsilon} w \right|^2 \mathrm{d}x, \quad \text{dom } t_\varepsilon = H^1([a, \infty)), \quad (2)
\]

and denote by \(T_\varepsilon \) the associated operator.

Under the above conditions:

Theorem (3)(based on Friedlander & Solomyak method)

*For \(g \) as above, one has

\[
\| H_\varepsilon^{-1} - (T_\varepsilon^{-1} \oplus 0) \| \rightarrow 0, \quad \varepsilon \rightarrow 0,
\]

where 0 is the null operator on the subspace \(\mathcal{L}^\perp \).
• T_ϵ is already **unidimensional**. The next task is the limit of T_ϵ.

Theorem (4) (based on Bedoya, deO & Verri)

Let $g : [a, \infty) \to \mathbb{R}$ be as above. Then:

(A) The sequence T_ϵ converges in the strong resolvent sense to S.

(B) If $j(x) = \frac{g'(x)}{2g(x)}$ vanishes as $x \to \infty$, then

$$
\|T_\epsilon^{-1} - S^{-1}\| \to 0.
$$

Recall: $Sw = -w'' + \varrho(x)w$, with $\varrho = j^2 + j'$, and b.c. $j(a)w(a) = w'(a)$.
Uniformly collapsing approximations

Uniformly collapsing regions

- T_ε is already **unidimensional**. The next task is the limit of T_ε.

Theorem (4) (based on Bedoya, deO & Verri)

Let $g : [a, \infty) \to \mathbb{R}$ be as above. Then:

(A) The sequence T_ε converges in the strong resolvent sense to S.

(B) If $j(x) = \frac{g'(x)}{2g(x)}$ vanishes as $x \to \infty$, then

$$\|T_\varepsilon^{-1} - S^{-1}\| \to 0.$$

Recall: $Sw = -w'' + \varrho(x)w$, with $\varrho = j^2 + j'$, and b.c. $j(a)w(a) = w'(a)$.
• \(T_\varepsilon \) is already **unidimensional**. The next task is the limit of \(T_\varepsilon \).

Theorem (4) (based on Bedoya, deO & Verri)

Let \(g : [a, \infty) \to \mathbb{R} \) be as above. Then:

(A) The sequence \(T_\varepsilon \) converges in the strong resolvent sense to \(S \).

(B) If \(j(x) = \frac{g'(x)}{2g(x)} \) vanishes as \(x \to \infty \), then

\[
\|T_\varepsilon^{-1} - S^{-1}\| \to 0.
\]

Recall: \(Sw = -w'' + g(x)w \), with \(g = j^2 + j' \), and b.c. \(j(a)w(a) = w'(a) \).
Uniformly collapsing approximations

Uniformly collapsing regions

- T_ε is already **unidimensional**. The next task is the limit of T_ε.

Theorem (4) (based on Bedoya, deO & Verri)

Let $g : [a, \infty) \rightarrow \mathbb{R}$ be as above. Then:

(A) The sequence T_ε converges in the strong resolvent sense to S.

(B) If $j(x) = \frac{g'(x)}{2g(x)}$ vanishes as $x \rightarrow \infty$, then

$$\|T_\varepsilon^{-1} - S^{-1}\| \longrightarrow 0.$$

Recall: $Sw = -w'' + \varrho(x)w$, with $\varrho = j^2 + j'$, and b.c. $j(a)w(a) = w'(a)$.

Uniformly collapsing regions

In summary:

through such uniformly collapsing Q_ϵ we have recovered S (initially found from Kato-Robinson) as the effective operator.

Especially in case

$$j(x) = \frac{g'(x)}{2g(x)} \to 0, \quad x \to \infty,$$

there is a norm convergence

$$\| H_\epsilon^{-1} - (S^{-1} \oplus 0) \| \to 0.$$
Uniformly collapsing approximations

Uniformly collapsing regions

In summary:

through such uniformly collapsing Q_ε we have recovered S (initially found from Kato-Robinson) as the effective operator.

Especially in case

$$j(x) = \frac{g'(x)}{2g(x)} \to 0, \quad x \to \infty,$$

there is a norm convergence

$$\|H_\varepsilon^{-1} - (S^{-1} \oplus 0)\| \to 0.$$
1 Sources

2 Collapsing regions

3 Effective operator

4 Uniformly collapsing approximations

5 Examples
Class I. [Power law] Take $g(x) = \gamma x^\beta$, $\gamma, \beta > 0$, for $x \geq 1$.

Then $a = 1$ and $j(x) = \beta/(2x)$ vanishes at infinity. So, as $\epsilon \to 0$, there is a norm resolvent convergence (in uniformly collapsing regions) to the effective operator

$$(Sw)(x) = -w''(x) + \frac{\beta(\beta - 2)}{4x^2}w(x), \quad \frac{\beta}{2}w(1) = w'(1).$$
Class I. [Power law] Take $g(x) = \gamma x^\beta$, $\gamma, \beta > 0$, for $x \geq 1$.

Then $a = 1$ and $j(x) = \beta/(2x)$ vanishes at infinity. So, as $\varepsilon \to 0$, there is a norm resolvent convergence (in uniformly collapsing regions) to the effective operator

$$(Sw)(x) = -w''(x) + \frac{\beta(\beta - 2)}{4x^2} w(x), \quad \frac{\beta}{2} w(1) = w'(1).$$
Examples

Note that for \(g(x) = \gamma x^\beta \) the effective potential \(\varphi(x) = \frac{\beta(\beta-2)}{4x^2} \):

- does not depend on \(\gamma \);
- vanishes for \(\beta = 2 \) and is proportional to \(x^{-2} \) for all values of \(\beta \);
- is negative for \(0 < \beta < 2 \) and positive for \(\beta > 2 \).
Examples

Note that for \(g(x) = \gamma x^\beta \) the effective potential \(\varrho(x) = \frac{\beta(\beta-2)}{4x^2} \):

- does not depend on \(\gamma \);
- vanishes for \(\beta = 2 \) and is proportional to \(x^{-2} \) for all values of \(\beta \);
- is negative for \(0 < \beta < 2 \) and positive for \(\beta > 2 \).
Note that for $g(x) = \gamma x^\beta$ the effective potential $\varrho(x) = \frac{\beta(\beta-2)}{4x^2}$:

- does not depend on γ;
- vanishes for $\beta = 2$ and is proportional to x^{-2} for all values of β;
- is negative for $0 < \beta < 2$ and positive for $\beta > 2$.
Class II. [Exponential of a power] For $x \geq 1$, consider $g(x) = \gamma e^{x^\beta}$, $\gamma, \beta > 0$.

Now $j(x) = \frac{\beta^2}{2x^{1-\beta}}$: it is bounded only if $\beta \leq 1$ and vanishes at infinity if $\beta < 1$.

The effective operator in this case is

$$(Sw)(x) = (S^\beta w)(x) := -w''(x) + q^\beta(x)w(x), \quad \beta \frac{2}{2}w(1) = w'(1),$$

with $q^\beta(x) := \frac{1}{4} \left(\frac{\beta^2}{x^{2(1-\beta)}} - \frac{2\beta(1-\beta)}{x^{2-\beta}} \right)$.

By Theorem 4, if $0 < \beta < 1$, one has (in Q_ε) norm resolvent convergence to the effective operator, whereas for $\beta = 1$ we have strong convergence.
Class II. [Exponential of a power] For $x \geq 1$, consider $g(x) = \gamma e^{x^\beta}$, $\gamma, \beta > 0$.

Now $j(x) = \frac{\beta}{2x^{1-\beta}}$: it is bounded only if $\beta \leq 1$ and vanishes at infinity if $\beta < 1$.

The effective operator in this case is

$$(Sw)(x) = (S^\beta w)(x) := -w''(x) + \varrho^\beta(x)w(x), \quad \frac{\beta}{2}w(1) = w'(1),$$

with $\varrho^\beta(x) := \frac{1}{4} \left(\frac{\beta^2}{x^{2(1-\beta)}} - \frac{2\beta(1-\beta)}{x^{2-\beta}} \right)$.

By Theorem 4, if $0 < \beta < 1$, one has (in Q_ϵ) norm resolvent convergence to the effective operator, whereas for $\beta = 1$ we have strong convergence.
Class II. [Exponential of a power] For $x \geq 1$, consider $g(x) = \gamma e^{x^\beta}$, $\gamma, \beta > 0$.

Now $j(x) = \frac{\beta}{2x^{1-\beta}}$: it is bounded only if $\beta \leq 1$ and vanishes at infinity if $\beta < 1$.

The effective operator in this case is

$$(Sw)(x) = (S^\beta w)(x) := -w''(x) + q^\beta(x)w(x), \quad \frac{\beta}{2}w(1) = w'(1),$$

with $q^\beta(x) := \frac{1}{4} \left(\frac{\beta^2}{x^{2(1-\beta)}} - \frac{2\beta(1-\beta)}{x^{2-\beta}} \right)$.

By Theorem 4, if $0 < \beta < 1$, one has (in Q_ε) norm resolvent convergence to the effective operator, whereas for $\beta = 1$ we have strong convergence.
Examples

Class II. [Exponential of a power] For $x \geq 1$, consider $g(x) = \gamma e^{x^\beta}$, $\gamma, \beta > 0$.

Now $j(x) = \frac{\beta}{2x^{1-\beta}}$: it is bounded only if $\beta \leq 1$ and vanishes at infinity if $\beta < 1$.

The effective operator in this case is

$$(Sw)(x) = (S^\beta w)(x) := -w''(x) + \varrho^\beta(x)w(x), \quad \frac{\beta}{2}w(1) = w'(1),$$

with $\varrho^\beta(x) := \frac{1}{4} \left(\frac{\beta^2}{x^{2(1-\beta)}} - \frac{2\beta(1-\beta)}{x^{2-\beta}} \right)$.

By Theorem 4, if $0 < \beta < 1$, one has (in Q_ε) norm resolvent convergence to the effective operator, whereas for $\beta = 1$ we have strong convergence.
For “regions” $g(x) = \gamma e^{x^\beta}$, the effective potential $\varrho^\beta(x) = \frac{1}{4} \left(\frac{\beta^2}{x^{2(1-\beta)}} - \frac{2\beta(1-\beta)}{x^{2-\beta}} \right)$:

- does not depend on γ;

- for $0 < \beta < 1$, it is bounded and vanishes at ∞. Furthermore, it is negative in a neighborhood of 1 and positive for large values of x;

- for $\beta = 1$ (the exponentially thick region), it is constant and equals to $1/4$, and so the transition point from norm to strong resolvent approximations.
For “regions” $g(x) = \gamma e^{x^\beta}$, the effective potential $g^\beta(x) = \frac{1}{4} \left(\frac{\beta^2}{x^{2(1-\beta)}} - \frac{2\beta(1-\beta)}{x^{2-\beta}} \right)$:

- does not depend on γ;

- for $0 < \beta < 1$, it is bounded and vanishes at ∞. Furthermore, it is negative in a neighborhood of 1 and positive for large values of x;

- for $\beta = 1$ (the exponentially thick region), it is constant and equals to $1/4$, and so the transition point from norm to strong resolvent approximations.
For “regions” $g(x) = \gamma e^{x^\beta}$, the effective potential $g^\beta(x) = \frac{1}{4} \left(\frac{\beta^2}{x^{2(1-\beta)}} - \frac{2\beta(1-\beta)}{x^{2-\beta}} \right)$:

- does not depend on γ;
- for $0 < \beta < 1$, it is bounded and vanishes at ∞. Furthermore, it is negative in a neighborhood of 1 and positive for large values of x;
- for $\beta = 1$ (the exponentially thick region), it is constant and equals to $1/4$, and so the transition point from norm to strong resolvent approximations.
Examples

If time permits.

Final remarks:

- The condition that \(j(x) \) is bounded implies that \(g(x) \leq \gamma e^{\kappa x} \).

In the borderline case \(g(x) = \gamma e^{\kappa x} \) one has the effective potential \(g(x) = \frac{\kappa^2}{4} \).

- For \(g(x) = x^3 + \frac{1}{2} \frac{\sin(x^3)}{x} \), \(x \geq 1 \), it follows that \(j(x) \) vanishes at infinity and \(g(x) \) is bounded but oscillates wildly for large \(x \).

- Naturally, a spectral analysis should be undertaken ...
Examples

If time permits.

Final remarks:

- The condition that $j(x)$ is bounded implies that $g(x) \leq \gamma e^{\kappa x}$.

In the borderline case $g(x) = \gamma e^{\kappa x}$ one has the effective potential $g(x) = \frac{\kappa^2}{4}$.

- For $g(x) = x^3 + \frac{1}{2} \sin(x^3)$, $x \geq 1$, it follows that $j(x)$ vanishes at infinity and $g(x)$ is bounded but oscillates wildly for large x.

- Naturally, a spectral analysis should be undertaken ...
Examples

If time permits.

Final remarks:

• The condition that $j(x)$ is bounded implies that $g(x) \leq \gamma e^{\kappa x}$.

In the borderline case $g(x) = \gamma e^{\kappa x}$ one has the effective potential $\varrho(x) = \frac{\kappa^2}{4}$.

• For $g(x) = x^3 + \frac{1}{2} \frac{\sin(x^3)}{x}$, $x \geq 1$, it follows that $j(x)$ vanishes at infinity and $\varrho(x)$ is bounded but oscillates wildly for large x.

• Naturally, a spectral analysis should be undertaken ...
Examples

If time permits.

Final remarks:

• The condition that $j(x)$ is bounded implies that $g(x) \leq \gamma e^{\kappa x}$.

In the borderline case $g(x) = \gamma e^{\kappa x}$ one has the effective potential $\varrho(x) = \frac{\kappa^2}{4}$.

• For $g(x) = x^3 + \frac{1}{2} \frac{\sin(x^3)}{x}, \ x \geq 1$, it follows that $j(x)$ vanishes at infinity and $\varrho(x)$ is bounded but oscillates wildly for large x.

• Naturally, a spectral analysis should be undertaken ...
Examples

If time permits.

Final remarks:

- The condition that \(j(x) \) is bounded implies that \(g(x) \leq \gamma e^{\kappa x} \).

In the borderline case \(g(x) = \gamma e^{\kappa x} \) one has the effective potential \(\varrho(x) = \frac{\kappa^2}{4} \).

- For \(g(x) = x^3 + \frac{1}{2} \sin(x^3), \; x \geq 1 \), it follows that \(j(x) \) vanishes at infinity and \(\varrho(x) \) is bounded but oscillates wildly for large \(x \).

- Naturally, a spectral analysis should be undertaken ...
Thanks

Thank you.